Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity - PubMed (original) (raw)
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
Murat Okatan et al. Neural Comput. 2005 Sep.
Abstract
Analyzing the dependencies between spike trains is an important step in understanding how neurons work in concert to represent biological signals. Usually this is done for pairs of neurons at a time using correlation-based techniques. Chornoboy, Schramm, and Karr (1988) proposed maximum likelihood methods for the simultaneous analysis of multiple pair-wise interactions among an ensemble of neurons. One of these methods is an iterative, continuous-time estimation algorithm for a network likelihood model formulated in terms of multiplicative conditional intensity functions. We devised a discrete-time version of this algorithm that includes a new, efficient computational strategy, a principled method to compute starting values, and a principled stopping criterion. In an analysis of simulated neural spike trains from ensembles of interacting neurons, the algorithm recovered the correct connectivity matrices and interaction parameters. In the analysis of spike trains from an ensemble of rat hippocampal place cells, the algorithm identified a connectivity matrix and interaction parameters consistent with the pattern of conjoined firing predicted by the overlap of the neurons' spatial receptive fields. These results suggest that the network likelihood model can be an efficient tool for the analysis of ensemble spiking activity.
Similar articles
- Dynamic analyses of information encoding in neural ensembles.
Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, Wilson MA, Brown EN. Barbieri R, et al. Neural Comput. 2004 Feb;16(2):277-307. doi: 10.1162/089976604322742038. Neural Comput. 2004. PMID: 15006097 - A neural network simulation of simultaneous single-unit activity recorded from the dragonfly ganglia.
Faller WE, Luttges MW. Faller WE, et al. Biomed Sci Instrum. 1990;26:201-8. Biomed Sci Instrum. 1990. PMID: 2334768 - Common-input models for multiple neural spike-train data.
Kulkarni JE, Paninski L. Kulkarni JE, et al. Network. 2007 Dec;18(4):375-407. doi: 10.1080/09548980701625173. Network. 2007. PMID: 17943613 - Overview of facts and issues about neural coding by spikes.
Cessac B, Paugam-Moisy H, Viéville T. Cessac B, et al. J Physiol Paris. 2010 Jan-Mar;104(1-2):5-18. doi: 10.1016/j.jphysparis.2009.11.002. Epub 2009 Nov 29. J Physiol Paris. 2010. PMID: 19925865 Review. - Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory.
Knierim JJ, Lee I, Hargreaves EL. Knierim JJ, et al. Hippocampus. 2006;16(9):755-64. doi: 10.1002/hipo.20203. Hippocampus. 2006. PMID: 16883558 Review.
Cited by
- Correlations and Neuronal Population Information.
Kohn A, Coen-Cagli R, Kanitscheider I, Pouget A. Kohn A, et al. Annu Rev Neurosci. 2016 Jul 8;39:237-56. doi: 10.1146/annurev-neuro-070815-013851. Epub 2016 Apr 21. Annu Rev Neurosci. 2016. PMID: 27145916 Free PMC article. Review. - Missing mass approximations for the partition function of stimulus driven Ising models.
Haslinger R, Ba D, Galuske R, Williams Z, Pipa G. Haslinger R, et al. Front Comput Neurosci. 2013 Jul 24;7:96. doi: 10.3389/fncom.2013.00096. eCollection 2013. Front Comput Neurosci. 2013. PMID: 23898262 Free PMC article. - Causal entropies--a measure for determining changes in the temporal organization of neural systems.
Waddell J, Dzakpasu R, Booth V, Riley B, Reasor J, Poe G, Zochowski M. Waddell J, et al. J Neurosci Methods. 2007 May 15;162(1-2):320-32. doi: 10.1016/j.jneumeth.2006.12.008. Epub 2006 Dec 22. J Neurosci Methods. 2007. PMID: 17275095 Free PMC article. - Inferring thalamocortical monosynaptic connectivity in vivo.
Liew YJ, Pala A, Whitmire CJ, Stoy WA, Forest CR, Stanley GB. Liew YJ, et al. J Neurophysiol. 2021 Jun 1;125(6):2408-2431. doi: 10.1152/jn.00591.2020. Epub 2021 May 12. J Neurophysiol. 2021. PMID: 33978507 Free PMC article. - Copula regression analysis of simultaneously recorded frontal eye field and inferotemporal spiking activity during object-based working memory.
Hu M, Clark KL, Gong X, Noudoost B, Li M, Moore T, Liang H. Hu M, et al. J Neurosci. 2015 Jun 10;35(23):8745-57. doi: 10.1523/JNEUROSCI.5041-14.2015. J Neurosci. 2015. PMID: 26063909 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources