Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity - PubMed (original) (raw)
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity
Murat Okatan et al. Neural Comput. 2005 Sep.
Abstract
Analyzing the dependencies between spike trains is an important step in understanding how neurons work in concert to represent biological signals. Usually this is done for pairs of neurons at a time using correlation-based techniques. Chornoboy, Schramm, and Karr (1988) proposed maximum likelihood methods for the simultaneous analysis of multiple pair-wise interactions among an ensemble of neurons. One of these methods is an iterative, continuous-time estimation algorithm for a network likelihood model formulated in terms of multiplicative conditional intensity functions. We devised a discrete-time version of this algorithm that includes a new, efficient computational strategy, a principled method to compute starting values, and a principled stopping criterion. In an analysis of simulated neural spike trains from ensembles of interacting neurons, the algorithm recovered the correct connectivity matrices and interaction parameters. In the analysis of spike trains from an ensemble of rat hippocampal place cells, the algorithm identified a connectivity matrix and interaction parameters consistent with the pattern of conjoined firing predicted by the overlap of the neurons' spatial receptive fields. These results suggest that the network likelihood model can be an efficient tool for the analysis of ensemble spiking activity.
Similar articles
- Dynamic analyses of information encoding in neural ensembles.
Barbieri R, Frank LM, Nguyen DP, Quirk MC, Solo V, Wilson MA, Brown EN. Barbieri R, et al. Neural Comput. 2004 Feb;16(2):277-307. doi: 10.1162/089976604322742038. Neural Comput. 2004. PMID: 15006097 - A neural network simulation of simultaneous single-unit activity recorded from the dragonfly ganglia.
Faller WE, Luttges MW. Faller WE, et al. Biomed Sci Instrum. 1990;26:201-8. Biomed Sci Instrum. 1990. PMID: 2334768 - Common-input models for multiple neural spike-train data.
Kulkarni JE, Paninski L. Kulkarni JE, et al. Network. 2007 Dec;18(4):375-407. doi: 10.1080/09548980701625173. Network. 2007. PMID: 17943613 - Overview of facts and issues about neural coding by spikes.
Cessac B, Paugam-Moisy H, Viéville T. Cessac B, et al. J Physiol Paris. 2010 Jan-Mar;104(1-2):5-18. doi: 10.1016/j.jphysparis.2009.11.002. Epub 2009 Nov 29. J Physiol Paris. 2010. PMID: 19925865 Review. - Hippocampal place cells: parallel input streams, subregional processing, and implications for episodic memory.
Knierim JJ, Lee I, Hargreaves EL. Knierim JJ, et al. Hippocampus. 2006;16(9):755-64. doi: 10.1002/hipo.20203. Hippocampus. 2006. PMID: 16883558 Review.
Cited by
- Identifying and tracking simulated synaptic inputs from neuronal firing: insights from in vitro experiments.
Volgushev M, Ilin V, Stevenson IH. Volgushev M, et al. PLoS Comput Biol. 2015 Mar 30;11(3):e1004167. doi: 10.1371/journal.pcbi.1004167. eCollection 2015 Mar. PLoS Comput Biol. 2015. PMID: 25823000 Free PMC article. - Assessing neuronal interactions of cell assemblies during general anesthesia.
Chen Z, Vijayan S, Ching S, Hale G, Flores FJ, Wilson MA, Brown EN. Chen Z, et al. Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4175-8. doi: 10.1109/IEMBS.2011.6091036. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22255259 Free PMC article. - Whole-Brain Evaluation of Cortical Microconnectomes.
Matsuda K, Shirakami A, Nakajima R, Akutsu T, Shimono M. Matsuda K, et al. eNeuro. 2023 Oct 30;10(10):ENEURO.0094-23.2023. doi: 10.1523/ENEURO.0094-23.2023. Print 2023 Oct. eNeuro. 2023. PMID: 37903612 Free PMC article. - Modeling task-specific neuronal ensembles improves decoding of grasp.
Smith RJ, Soares AB, Rouse AG, Schieber MH, Thakor NV. Smith RJ, et al. J Neural Eng. 2018 Jun;15(3):036006. doi: 10.1088/1741-2552/aaac93. Epub 2018 Feb 2. J Neural Eng. 2018. PMID: 29393065 Free PMC article. - Extracting neuronal functional network dynamics via adaptive Granger causality analysis.
Sheikhattar A, Miran S, Liu J, Fritz JB, Shamma SA, Kanold PO, Babadi B. Sheikhattar A, et al. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3869-E3878. doi: 10.1073/pnas.1718154115. Epub 2018 Apr 9. Proc Natl Acad Sci U S A. 2018. PMID: 29632213 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources