Robotic-assisted laparoscopic dismembered pyeloplasty - PubMed (original) (raw)

Robotic-assisted laparoscopic dismembered pyeloplasty

Vipul Patel. Urology. 2005 Jul.

Abstract

Objectives: To evaluate the feasibility and efficacy of robotic-assisted laparoscopic pyeloplasty. Laparoscopic pyeloplasty has been shown to have a success rate comparable to that of the open surgical approach. However, the steep learning curve has hindered its acceptance into mainstream urologic practice. The introduction of robotic assistance provides advantages that have the potential to facilitate precise dissection and intracorporeal suturing.

Methods: A total of 50 patients underwent robotic-assisted laparoscopic dismembered pyeloplasty. A four-trocar technique was used. Most patients were discharged home on day 1, with stent removal at 3 weeks. Patency of the ureteropelvic junction was assessed in all patients with mercaptotriglycylglycine Lasix renograms at 1, 3, 6, 9, and 12 months, then every 6 months for 1 year, and then yearly.

Results: Each patient underwent a successful procedure without open conversion or transfusion. The average estimated blood loss was 40 mL. The operative time averaged 122 minutes (range 60 to 330) overall. Crossing vessels were present in 30% of the patients and were preserved in all cases. The time for the anastomosis averaged 20 minutes (range 10 to 100). Intraoperatively, no complications occurred. Postoperatively, the average hospital stay was 1.1 days. The stents were removed at an average of 20 days (range 14 to 28) postoperatively. The average follow-up was 11.7 months; at the last follow-up visit, each patient was doing well. Of the 50 patients, 48 underwent one or more renograms, demonstrating stable renal function, improved drainage, and no evidence of recurrent obstruction.

Conclusions: Robotic-assisted laparoscopic pyeloplasty is a feasible technique for ureteropelvic junction reconstruction. The procedure provides a minimally invasive alternative with good short-term results.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms