Angiotensin-converting enzyme 2 protects from severe acute lung failure - PubMed (original) (raw)
. 2005 Jul 7;436(7047):112-6.
doi: 10.1038/nature03712.
Keiji Kuba, Shuan Rao, Yi Huan, Feng Guo, Bin Guan, Peng Yang, Renu Sarao, Teiji Wada, Howard Leong-Poi, Michael A Crackower, Akiyoshi Fukamizu, Chi-Chung Hui, Lutz Hein, Stefan Uhlig, Arthur S Slutsky, Chengyu Jiang, Josef M Penninger
Affiliations
- PMID: 16001071
- PMCID: PMC7094998
- DOI: 10.1038/nature03712
Angiotensin-converting enzyme 2 protects from severe acute lung failure
Yumiko Imai et al. Nature. 2005.
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is a devastating clinical syndrome with a high mortality rate (30-60%) (refs 1-3). Predisposing factors for ARDS are diverse and include sepsis, aspiration, pneumonias and infections with the severe acute respiratory syndrome (SARS) coronavirus. At present, there are no effective drugs for improving the clinical outcome of ARDS. Angiotensin-converting enzyme (ACE) and ACE2 are homologues with different key functions in the renin-angiotensin system. ACE cleaves angiotensin I to generate angiotensin II, whereas ACE2 inactivates angiotensin II and is a negative regulator of the system. ACE2 has also recently been identified as a potential SARS virus receptor and is expressed in lungs. Here we report that ACE2 and the angiotensin II type 2 receptor (AT2) protect mice from severe acute lung injury induced by acid aspiration or sepsis. However, other components of the renin-angiotensin system, including ACE, angiotensin II and the angiotensin II type 1a receptor (AT1a), promote disease pathogenesis, induce lung oedemas and impair lung function. We show that mice deficient for Ace show markedly improved disease, and also that recombinant ACE2 can protect mice from severe acute lung injury. Our data identify a critical function for ACE2 in acute lung injury, pointing to a possible therapy for a syndrome affecting millions of people worldwide every year.
Conflict of interest statement
J.M.P. declares personal financial interests.
Figures
Figure 1. Loss of ACE2 worsens acid aspiration-induced acute lung injury.
a, Lung elastance after acid or saline treatment in wild type (WT) and Ace2 knockout (Ace2 KO) mice (n = 10 for acid-treated groups, n = 6 for saline-treated groups). P < 0.05 for the whole time course comparing acid-treated WT and Ace2 knockout mice. b, Partial pressure of oxygen in arterial blood (paO2) in acid-induced acute lung injury. c, Wet-to-dry weight ratios of lungs 3 h after acid injury. Single asterisk, P < 0.05; double asterisk, P < 0.01. d, Lung histopathology. Note the enhanced hyaline membrane formation, inflammatory cell infiltration and lung oedema in acid-treated Ace2 knockout mice (H&E staining, ×200). e, ACE and ACE2 protein expression in total lysates from control lungs and lungs 3 h after acid injury. Error bars indicate s.e.m.
Figure 2. ACE2 controls acute lung failure.
a, Lung elastance after acute lung injury in WT and Ace2 knockout (KO) mice induced by caecal ligation perforation (CLP). Eighteen hours after sham or CLP surgery, animals received mechanical ventilation for 6 h (n = 10 in CLP-treated groups, n = 6 in sham-treated groups). As 8/10 CLP-treated Ace2 knockout mice died at 4–4.5 h, only data up to 4 h are shown. CLP-treated Ace2 knockout mice had significantly higher elastance than CLP-treated WT mice (P < 0.01). b, c, Wet-to-dry weight ratios of lungs (b) and lung histopathology (c) in sham or CLP-treated WT and Ace2 knockout mice determined after 4 h of ventilation. Asterisk denotes a significant difference (P < 0.05) between CLP-treated WT and Ace2 knockout mice. Note the enhanced lung oedema and inflammatory infiltrates in Ace2 knockout mice (H&E staining, ×200). d, e, Lung elastance (d) and wet-to-dry weight ratios (e) after acid or saline instillation of Ace2 knockout mice injected intraperitoneally with recombinant human ACE2 protein (rhuACE2; 0.1 mg kg-1), mutant rhuACE2 (mut-rhuACE2; 0.1 mg kg-1) or vehicle (n = 6 per group). Asterisk denotes a significant difference (P < 0.05) comparing rhuACE2-treated Ace2 knockout mice with mut-rhuACE2-treated and vehicle-treated Ace2 knockout mice at 3 h. f, Lung elastance after acid instillation in WT mice treated with rhuACE2 protein (0.1 mg kg-1), mut-rhuACE2 protein (0.1 mg kg-1) or vehicle (n = 6–8 per group). Asterisk denotes a significant difference (P < 0.05) between WT mice treated with rhuACE2 and mut-rhuACE2 or with vehicle at 3 h. Errors bars indicate s.e.m.
Figure 3. ACE deficiency reduces the severity of acute lung injury.
a, Schematic diagram of the renin–angiotensin system. b, Lung levels of AngII in control and acid-treated WT and Ace2 knockout (KO) mice determined at 3 h by enzyme immunoassay (n = 3–5 per group). Asterisk denotes a significant difference (P < 0.05) between acid-treated WT and Ace2 knockout mice. c, Lung elastance after acid instillation in Ace+/+ (WT), Ace+/- and _Ace_-/- mice (n = 4–6 mice per group). Asterisk denotes a significant difference (P < 0.05) comparing Ace+/+ with Ace+/- and _Ace_-/- mice at 3 h. d, e, Lung elastance (d) and wet-to-dry lung weight ratios (e) in acid- or saline-treated Ace+/+Ace2 KO, Ace+/-Ace2 KO, _Ace_-/-Ace2 KO and WT mice (n = 5 per group). Asterisk denotes a significant difference (P < 0.05) comparing Ace2 KO with WT, Ace+/-Ace2 KO or _Ace_-/-Ace2 KO mice 3 h after acid-treatment. f, Lung histopathology. Severe lung interstitial oedema and leukocyte infiltration in Ace2 KO mice are attenuated by homozygous (_Ace_-/-) or heterozygous (Ace+/-) mutations of Ace (H&E staining, ×200). Error bars indicate s.e.m.
Figure 4. The AngII receptor AT 1 a controls acute lung injury severity and pulmonary vascular permeability.
a, Lung elastance measurements in _Agtr1a_-/- mice, _Agtr2_-/y mice and WT mice after acid aspiration (n = 4–6 per group). All acid-treated _Agtr2_-/y mice died after 2 h. There is a significant difference (P < 0.01) between acid-treated WT and acid-treated _Agtr1a_-/- mice over the whole time course. Double asterisk denotes a significant difference (P < 0.01) between WT and _Agtr2_-/y mice at 2 h. b, Lung elastance measurements in Ace2 knockout mice treated with vehicle or inhibitors to AT1 (Losartan, 15 mg kg-1) or AT2 (PD123.319, 15 mg kg-1) after acid or saline instillation (see Methods, n = 4–6 per group). Double asterisk denotes a significant difference (P < 0.01) comparing Ace2 knockout mice treated with AT1 inhibitor with vehicle or AT2 inhibitor treatment at 3 h. c, Pulmonary vascular permeability as determined by intravenous injection of Evans Blue. Extravascular Evans Blue in lungs was measured in WT and Ace2 knockout mice 3 h after acid injury (n = 5 per group). Double asterisk denotes a significant difference (P < 0.01) between acid-treated WT and Ace2 knockout mice. d, Representative images of Evans Blue-injected lungs of WT and Ace2 knockout mice 3 h after acid aspiration. e, Extravascular Evans Blue in lungs of WT and _Agtr1a_-/- mice 3 h after acid injury (n = 5 per group). Asterisk denotes a significant difference (P < 0.05) between acid-treated WT and _Agtr1a_-/- mice at 3 h. Error bars indicate s.e.m.
Similar articles
- The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice.
Imai Y, Kuba K, Penninger JM. Imai Y, et al. Exp Physiol. 2008 May;93(5):543-8. doi: 10.1113/expphysiol.2007.040048. Epub 2008 Apr 10. Exp Physiol. 2008. PMID: 18448662 Free PMC article. Review. - ACE2-like enzyme B38-CAP suppresses abdominal sepsis and severe acute lung injury.
Minato T, Yamaguchi T, Hoshizaki M, Nirasawa S, An J, Takahashi S, Penninger JM, Imai Y, Kuba K. Minato T, et al. PLoS One. 2022 Jul 22;17(7):e0270920. doi: 10.1371/journal.pone.0270920. eCollection 2022. PLoS One. 2022. PMID: 35867642 Free PMC article. - Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome.
Hrenak J, Simko F. Hrenak J, et al. Int J Mol Sci. 2020 Oct 28;21(21):8038. doi: 10.3390/ijms21218038. Int J Mol Sci. 2020. PMID: 33126657 Free PMC article. Review. - Angiotensin-converting enzyme 2 in acute respiratory distress syndrome.
Imai Y, Kuba K, Penninger JM. Imai Y, et al. Cell Mol Life Sci. 2007 Aug;64(15):2006-12. doi: 10.1007/s00018-007-6228-6. Cell Mol Life Sci. 2007. PMID: 17558469 Free PMC article. Review.
Cited by
- Gender disparity in COVID-19: Role of sex steroid hormones.
Lipsa A, Prabhu JS. Lipsa A, et al. Asian Pac J Trop Med. 2021;14(1):5-9. doi: 10.4103/1995-7645.304293. Epub 2021 Jan 5. Asian Pac J Trop Med. 2021. PMID: 33828641 Free PMC article. - Could a specific ACE2 activator drug improve the clinical outcome of SARS-CoV-2? A potential pharmacological insight.
Nicolau LAD, Nolêto IRSG, Medeiros JVR. Nicolau LAD, et al. Expert Rev Clin Pharmacol. 2020 Aug;13(8):807-811. doi: 10.1080/17512433.2020.1798760. Epub 2020 Jul 25. Expert Rev Clin Pharmacol. 2020. PMID: 32686527 Free PMC article. No abstract available. - The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes.
Ranjbar T, Oza PP, Kashfi K. Ranjbar T, et al. Int J Mol Sci. 2022 Nov 11;23(22):13895. doi: 10.3390/ijms232213895. Int J Mol Sci. 2022. PMID: 36430371 Free PMC article. Review. - Insights on SARS-CoV-2 Molecular Interactions With the Renin-Angiotensin System.
Costa LB, Perez LG, Palmeira VA, Macedo E Cordeiro T, Ribeiro VT, Lanza K, Simões E Silva AC. Costa LB, et al. Front Cell Dev Biol. 2020 Sep 16;8:559841. doi: 10.3389/fcell.2020.559841. eCollection 2020. Front Cell Dev Biol. 2020. PMID: 33042994 Free PMC article. Review. - COVID-19 and Diabetes: The Importance of Controlling RAGE.
De Francesco EM, Vella V, Belfiore A. De Francesco EM, et al. Front Endocrinol (Lausanne). 2020 Jul 14;11:526. doi: 10.3389/fendo.2020.00526. eCollection 2020. Front Endocrinol (Lausanne). 2020. PMID: 32760352 Free PMC article. No abstract available.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous