The genome of the African trypanosome Trypanosoma brucei - PubMed (original) (raw)

. 2005 Jul 15;309(5733):416-22.

doi: 10.1126/science.1112642.

Elodie Ghedin, Christiane Hertz-Fowler, Gaëlle Blandin, Hubert Renauld, Daniella C Bartholomeu, Nicola J Lennard, Elisabet Caler, Nancy E Hamlin, Brian Haas, Ulrike Böhme, Linda Hannick, Martin A Aslett, Joshua Shallom, Lucio Marcello, Lihua Hou, Bill Wickstead, U Cecilia M Alsmark, Claire Arrowsmith, Rebecca J Atkin, Andrew J Barron, Frederic Bringaud, Karen Brooks, Mark Carrington, Inna Cherevach, Tracey-Jane Chillingworth, Carol Churcher, Louise N Clark, Craig H Corton, Ann Cronin, Rob M Davies, Jonathon Doggett, Appolinaire Djikeng, Tamara Feldblyum, Mark C Field, Audrey Fraser, Ian Goodhead, Zahra Hance, David Harper, Barbara R Harris, Heidi Hauser, Jessica Hostetler, Al Ivens, Kay Jagels, David Johnson, Justin Johnson, Kristine Jones, Arnaud X Kerhornou, Hean Koo, Natasha Larke, Scott Landfear, Christopher Larkin, Vanessa Leech, Alexandra Line, Angela Lord, Annette Macleod, Paul J Mooney, Sharon Moule, David M A Martin, Gareth W Morgan, Karen Mungall, Halina Norbertczak, Doug Ormond, Grace Pai, Chris S Peacock, Jeremy Peterson, Michael A Quail, Ester Rabbinowitsch, Marie-Adele Rajandream, Chris Reitter, Steven L Salzberg, Mandy Sanders, Seth Schobel, Sarah Sharp, Mark Simmonds, Anjana J Simpson, Luke Tallon, C Michael R Turner, Andrew Tait, Adrian R Tivey, Susan Van Aken, Danielle Walker, David Wanless, Shiliang Wang, Brian White, Owen White, Sally Whitehead, John Woodward, Jennifer Wortman, Mark D Adams, T Martin Embley, Keith Gull, Elisabetta Ullu, J David Barry, Alan H Fairlamb, Fred Opperdoes, Barclay G Barrell, John E Donelson, Neil Hall, Claire M Fraser, Sara E Melville, Najib M El-Sayed

Affiliations

Free article

The genome of the African trypanosome Trypanosoma brucei

Matthew Berriman et al. Science. 2005.

Free article

Abstract

African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources