The dynamics of chromatin remodeling at promoters - PubMed (original) (raw)
Review
. 2005 Jul 22;19(2):147-57.
doi: 10.1016/j.molcel.2005.06.023.
Affiliations
- PMID: 16039585
- DOI: 10.1016/j.molcel.2005.06.023
Free article
Review
The dynamics of chromatin remodeling at promoters
Jane Mellor. Mol Cell. 2005.
Free article
Abstract
The nucleosome, the structural unit of chromatin, is known to play a central role in regulating gene transcription from promoters. The last seven years have spawned a vast amount of data on the enzymes that remodel and modify nucleosomes and the rules governing how transcription factors interact with the epigenetic code on histones. Yet despite this effort, there has yet to emerge a unifying mechanism by which nucleosomes are remodeled during gene regulation. Recent advances have allowed nucleosome dynamics on promoters to be studied in real time, dramatically changing how we think about gene regulation on chromatin templates.
Similar articles
- Nucleosomes at active promoters: unforgettable loss.
Henikoff S. Henikoff S. Cancer Cell. 2007 Nov;12(5):407-9. doi: 10.1016/j.ccr.2007.10.024. Cancer Cell. 2007. PMID: 17996642 - Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters.
Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. Jessen WJ, et al. Nat Struct Mol Biol. 2006 Mar;13(3):256-63. doi: 10.1038/nsmb1062. Epub 2006 Feb 19. Nat Struct Mol Biol. 2006. PMID: 16491089 - Rules and regulation in the primary structure of chromatin.
Rando OJ, Ahmad K. Rando OJ, et al. Curr Opin Cell Biol. 2007 Jun;19(3):250-6. doi: 10.1016/j.ceb.2007.04.006. Epub 2007 Apr 26. Curr Opin Cell Biol. 2007. PMID: 17466507 Review. - Dynamic nucleosomes and gene transcription.
Mellor J. Mellor J. Trends Genet. 2006 Jun;22(6):320-9. doi: 10.1016/j.tig.2006.03.008. Epub 2006 May 2. Trends Genet. 2006. PMID: 16631276 Review. - Epigenetic regulators and histone modification.
Imhof A. Imhof A. Brief Funct Genomic Proteomic. 2006 Sep;5(3):222-7. doi: 10.1093/bfgp/ell030. Epub 2006 Sep 2. Brief Funct Genomic Proteomic. 2006. PMID: 16951415 Review.
Cited by
- KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription.
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. Hyder U, et al. Nat Commun. 2024 Jul 12;15(1):5859. doi: 10.1038/s41467-024-49905-7. Nat Commun. 2024. PMID: 38997286 Free PMC article. - KAP1 negatively regulates RNA polymerase II elongation kinetics to activate signal-induced transcription.
Hyder U, Challa A, Thornton M, Nandu T, Kraus WL, D'Orso I. Hyder U, et al. bioRxiv [Preprint]. 2024 May 5:2024.05.05.592422. doi: 10.1101/2024.05.05.592422. bioRxiv. 2024. PMID: 38746145 Free PMC article. Updated. Preprint. - The contributions of DNA accessibility and transcription factor occupancy to enhancer activity during cellular differentiation.
Long T, Bhattacharyya T, Repele A, Naylor M, Nooti S, Krueger S, Manu. Long T, et al. G3 (Bethesda). 2024 Feb 7;14(2):jkad269. doi: 10.1093/g3journal/jkad269. G3 (Bethesda). 2024. PMID: 38124496 Free PMC article. - Chromatin accessibility differences between alpha, beta, and delta cells identifies common and cell type-specific enhancers.
Mawla AM, van der Meulen T, Huising MO. Mawla AM, et al. BMC Genomics. 2023 Apr 17;24(1):202. doi: 10.1186/s12864-023-09293-6. BMC Genomics. 2023. PMID: 37069576 Free PMC article. - 3D Genome Organization as an Epigenetic Determinant of Transcription Regulation in T Cells.
Papadogkonas G, Papamatheakis DA, Spilianakis C. Papadogkonas G, et al. Front Immunol. 2022 Jun 22;13:921375. doi: 10.3389/fimmu.2022.921375. eCollection 2022. Front Immunol. 2022. PMID: 35812421 Free PMC article. Review.