Studying the consequences of immediate loss of gene function in the intestine: APC - PubMed (original) (raw)
Review
. 2005 Aug;33(Pt 4):665-6.
doi: 10.1042/BST0330665.
Affiliations
- PMID: 16042569
- DOI: 10.1042/BST0330665
Review
Studying the consequences of immediate loss of gene function in the intestine: APC
A R Clarke. Biochem Soc Trans. 2005 Aug.
Abstract
The use of mouse models to study neoplasia is proving particularly powerful in dissecting the mechanisms underlying disease initiation and progression. However, the majority of these models have been somewhat limited in studying the very early effects of loss of gene function, as tumour initiation relies upon either constitutive loss of gene function or spontaneous somatic loss of function. We have therefore adopted a strategy of using an inducible Cre-lox-based system to analyse the effects of loss of gene function, the use of which is reviewed here for the intestinal tumour suppressor APC (adenomatous polyposis coli). Using this approach, we have conditionally and synchronously inactivated APC in virtually all the epithelial cells of the adult murine small intestine. After 5 days following induction of Cre-mediated recombination, mice show grossly altered crypt/villus architecture. Deficiency in APC perturbs migration, alters the normal programme of differentiation and results in increased proliferation and apoptosis. Microarray analysis reveals the transcriptome to be significantly altered; reflecting both gross phenotypic changes and changes in transcriptional activation. These findings demonstrate that APC is indeed the critical determinant of cell fate in the intestinal epithelium, explaining its role as the cellular 'gatekeeper' in preventing neoplasia.
Similar articles
- Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine.
Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, Laurent-Puig P, Kahn A, Robine S, Perret C, Romagnolo B. Andreu P, et al. Development. 2005 Mar;132(6):1443-51. doi: 10.1242/dev.01700. Epub 2005 Feb 16. Development. 2005. PMID: 15716339 - Liposome-mediated adenomatous polyposis coli gene therapy: a novel anti-adenoma strategy in multiple intestinal neoplasia mouse model.
Lee J, Hargest R, Wasan H, Phillips RK. Lee J, et al. Dis Colon Rectum. 2004 Dec;47(12):2105-13. doi: 10.1007/s10350-004-0722-9. Dis Colon Rectum. 2004. PMID: 15657662 - Elevated Dnmt3a activity promotes polyposis in Apc(Min) mice by relaxing extracellular restraints on Wnt signaling.
Samuel MS, Suzuki H, Buchert M, Putoczki TL, Tebbutt NC, Lundgren-May T, Christou A, Inglese M, Toyota M, Heath JK, Ward RL, Waring PM, Ernst M. Samuel MS, et al. Gastroenterology. 2009 Sep;137(3):902-13, 913.e1-11. doi: 10.1053/j.gastro.2009.05.042. Epub 2009 May 18. Gastroenterology. 2009. PMID: 19454286 - Can resistant starch and/or aspirin prevent the development of colonic neoplasia? The Concerted Action Polyp Prevention (CAPP) 1 Study.
Mathers JC, Mickleburgh I, Chapman PC, Bishop DT, Burn J; Concerted Action Polyp Prevention (CAPP) 1 Study. Mathers JC, et al. Proc Nutr Soc. 2003 Feb;62(1):51-7. doi: 10.1079/PNS2002236. Proc Nutr Soc. 2003. PMID: 12740057 Review. - Apc mice: models, modifiers and mutants.
McCart AE, Vickaryous NK, Silver A. McCart AE, et al. Pathol Res Pract. 2008;204(7):479-90. doi: 10.1016/j.prp.2008.03.004. Epub 2008 Jun 5. Pathol Res Pract. 2008. PMID: 18538487 Review.
Cited by
- Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.
Morioka T, Miyoshi-Imamura T, Blyth BJ, Kaminishi M, Kokubo T, Nishimura M, Kito S, Tokairin Y, Tani S, Murakami-Murofushi K, Yoshimi N, Shimada Y, Kakinuma S. Morioka T, et al. Cancer Sci. 2015 Mar;106(3):217-26. doi: 10.1111/cas.12591. Epub 2015 Feb 12. Cancer Sci. 2015. PMID: 25529563 Free PMC article. - Current Tissue Molecular Markers in Colorectal Cancer: A Literature Review.
Peluso G, Incollingo P, Calogero A, Tammaro V, Rupealta N, Chiacchio G, Sandoval Sotelo ML, Minieri G, Pisani A, Riccio E, Sabbatini M, Bracale UM, Dodaro CA, Carlomagno N. Peluso G, et al. Biomed Res Int. 2017;2017:2605628. doi: 10.1155/2017/2605628. Epub 2017 Oct 29. Biomed Res Int. 2017. PMID: 29214162 Free PMC article. Review. - Identification of a novel lipid metabolism-related gene signature for predicting colorectal cancer survival.
Huang Y, Zhou J, Zhong H, Xie N, Zhang FR, Zhang Z. Huang Y, et al. Front Genet. 2022 Sep 6;13:989327. doi: 10.3389/fgene.2022.989327. eCollection 2022. Front Genet. 2022. PMID: 36147494 Free PMC article. - Distinguishing between cancer driver and passenger gene alteration candidates via cross-species comparison: a pilot study.
Ji X, Tang J, Halberg R, Busam D, Ferriera S, Peña MM, Venkataramu C, Yeatman TJ, Zhao S. Ji X, et al. BMC Cancer. 2010 Aug 13;10:426. doi: 10.1186/1471-2407-10-426. BMC Cancer. 2010. PMID: 20707908 Free PMC article. - Polyclonal tumors in the mammalian intestine: are interactions among multiple initiated clones necessary for tumor initiation, growth, and progression?
Halberg RB, Dove WF. Halberg RB, et al. Cell Cycle. 2007 Jan 1;6(1):44-51. doi: 10.4161/cc.6.1.3651. Epub 2007 Jan 28. Cell Cycle. 2007. PMID: 17245117 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources