Structure of rhodopsin and the metarhodopsin I photointermediate - PubMed (original) (raw)
Review
Structure of rhodopsin and the metarhodopsin I photointermediate
Gebhard F X Schertler. Curr Opin Struct Biol. 2005 Aug.
Abstract
The structure of the visual pigment rhodopsin in the dark state was first investigated by electron microscopy (EM). More recently, rhodopsin has been crystallised in two different space groups--a tetragonal P4(1) crystal form and a trigonal P3(1) packing arrangement. The structures of the pigment, determined by X-ray crystallography from these two crystal forms, show many similarities, but also significant differences. These differences are most extensive in the G-protein-binding region of the cytoplasmic surface, where the location of the loop between helices 5 and 6 is highly variable. A combination of EM and spin labelling suggests that this loop adopts the native conformation in the P3(1) crystal form. The X-ray structures also show the location of structural water molecules that are important for colour tuning, stabilisation of the ground state and receptor activation, and act as a template for modelling other G-protein-coupled receptors. A major current focus of structural work on rhodopsin is investigation of the activated state of the receptor. After careful spectroscopic characterisation of light activation in two-dimensional crystals, a map of the metarhodopsin I intermediate was obtained by EM from two-dimensional crystals. In addition, NMR studies are providing information about the structure of activated states of rhodopsin. In the future, structural information will show how rhodopsin becomes activated and how it couples to downstream signalling pathways.
Similar articles
- X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
Mielke T, Villa C, Edwards PC, Schertler GF, Heyn MP. Mielke T, et al. J Mol Biol. 2002 Feb 22;316(3):693-709. doi: 10.1006/jmbi.2001.5352. J Mol Biol. 2002. PMID: 11866527 - Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
Bhattacharya S, Hall SE, Vaidehi N. Bhattacharya S, et al. J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7. J Mol Biol. 2008. PMID: 18638482 - Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane.
Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR. Davies A, et al. J Mol Biol. 2001 Nov 30;314(3):455-63. doi: 10.1006/jmbi.2001.5167. J Mol Biol. 2001. PMID: 11846559 - Crystal structure of rhodopsin: a G-protein-coupled receptor.
Stenkamp RE, Teller DC, Palczewski K. Stenkamp RE, et al. Chembiochem. 2002 Oct 4;3(10):963-7. doi: 10.1002/1439-7633(20021004)3:10<963::AID-CBIC963>3.0.CO;2-9. Chembiochem. 2002. PMID: 12362360 Review. No abstract available. - Multiple switches in G protein-coupled receptor activation.
Ahuja S, Smith SO. Ahuja S, et al. Trends Pharmacol Sci. 2009 Sep;30(9):494-502. doi: 10.1016/j.tips.2009.06.003. Epub 2009 Sep 3. Trends Pharmacol Sci. 2009. PMID: 19732972 Review.
Cited by
- Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
de Grip WJ, Ganapathy S. de Grip WJ, et al. Front Chem. 2022 Jun 22;10:879609. doi: 10.3389/fchem.2022.879609. eCollection 2022. Front Chem. 2022. PMID: 35815212 Free PMC article. Review. - Time-resolved structural studies with serial crystallography: A new light on retinal proteins.
Panneels V, Wu W, Tsai CJ, Nogly P, Rheinberger J, Jaeger K, Cicchetti G, Gati C, Kick LM, Sala L, Capitani G, Milne C, Padeste C, Pedrini B, Li XD, Standfuss J, Abela R, Schertler G. Panneels V, et al. Struct Dyn. 2015 Jun 29;2(4):041718. doi: 10.1063/1.4922774. eCollection 2015 Jul. Struct Dyn. 2015. PMID: 26798817 Free PMC article. - Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions.
Salas-Estrada LA, Leioatts N, Romo TD, Grossfield A. Salas-Estrada LA, et al. Biophys J. 2018 Jan 23;114(2):355-367. doi: 10.1016/j.bpj.2017.11.021. Biophys J. 2018. PMID: 29401433 Free PMC article. - Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer.
Lynch DL, Reggio PH. Lynch DL, et al. J Comput Aided Mol Des. 2006 Jul-Aug;20(7-8):495-509. doi: 10.1007/s10822-006-9068-9. Epub 2006 Nov 14. J Comput Aided Mol Des. 2006. PMID: 17106765 - The role of membrane curvature elastic stress for function of rhodopsin-like G protein-coupled receptors.
Soubias O, Teague WE, Hines KG, Gawrisch K. Soubias O, et al. Biochimie. 2014 Dec;107 Pt A(0 0):28-32. doi: 10.1016/j.biochi.2014.10.011. Biochimie. 2014. PMID: 25447139 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources