Neurobiology of opiate abuse - PubMed (original) (raw)
Review
Neurobiology of opiate abuse
G Di Chiara et al. Trends Pharmacol Sci. 1992 May.
Abstract
Opiates interact with cell surface receptors on neurons involved in the transmission of information along neural pathways that are related to behaviours essential for the life of the self and of the species. Opiates are provided with powerful and multifaceted rewarding properties that are fundamental for the acquisition, maintenance and relapse of opiate addiction. Gaetano Di Chiara and Alan North argue that both dopaminergic and non-dopaminergic systems are involved in opiate reward, and that opiate addiction results from adaptive and learning processes involving both positive reinforcing mechanisms related to the rewarding properties of opiates and negative reinforcing mechanisms related to the aversive properties of withdrawal in dependent subjects.
Similar articles
- Neural mechanisms of the reinforcing action of cocaine.
Wise RA. Wise RA. NIDA Res Monogr. 1984;50:15-33. NIDA Res Monogr. 1984. PMID: 6440023 Review. - The neurobiology of addiction.
Maldonado R. Maldonado R. J Neural Transm Suppl. 2003;(66):1-14. doi: 10.1007/978-3-7091-0541-2_1. J Neural Transm Suppl. 2003. PMID: 14582800 Review. - Brain mechanisms of drug reward and euphoria.
Wise RA, Bozarth MA. Wise RA, et al. Psychiatr Med. 1985;3(4):445-60. Psychiatr Med. 1985. PMID: 2893431 Review. - Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.
Kutlu MG, Gould TJ. Kutlu MG, et al. Learn Mem. 2016 Sep 15;23(10):515-33. doi: 10.1101/lm.042192.116. Print 2016 Oct. Learn Mem. 2016. PMID: 27634143 Free PMC article. Review. - Reward and abuse of opiates.
Ramsey NF, Van Ree JM. Ramsey NF, et al. Pharmacol Toxicol. 1992 Aug;71(2):81-94. doi: 10.1111/j.1600-0773.1992.tb00525.x. Pharmacol Toxicol. 1992. PMID: 1438034 Review.
Cited by
- Learning and generalization from reward and punishment in opioid addiction.
Myers CE, Rego J, Haber P, Morley K, Beck KD, Hogarth L, Moustafa AA. Myers CE, et al. Behav Brain Res. 2017 Jan 15;317:122-131. doi: 10.1016/j.bbr.2016.09.033. Epub 2016 Sep 15. Behav Brain Res. 2017. PMID: 27641323 Free PMC article. - The effects of lobeline and naltrexone on methamphetamine-induced place preference and striatal dopamine and serotonin levels in adolescent rats with a history of maternal separation.
Dimatelis JJ, Russell VA, Stein DJ, Daniels WM. Dimatelis JJ, et al. Metab Brain Dis. 2012 Sep;27(3):351-61. doi: 10.1007/s11011-012-9288-8. Epub 2012 Mar 4. Metab Brain Dis. 2012. PMID: 22392627 - Mu opioid receptor knockdown in the substantia nigra/ventral tegmental area by synthetic small interfering RNA blocks the rewarding and locomotor effects of heroin.
Zhang Y, Landthaler M, Schlussman SD, Yuferov V, Ho A, Tuschl T, Kreek MJ. Zhang Y, et al. Neuroscience. 2009 Jan 23;158(2):474-83. doi: 10.1016/j.neuroscience.2008.09.039. Epub 2008 Oct 2. Neuroscience. 2009. PMID: 18938225 Free PMC article. - Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal.
Manzoni OJ, Williams JT. Manzoni OJ, et al. J Neurosci. 1999 Aug 1;19(15):6629-36. doi: 10.1523/JNEUROSCI.19-15-06629.1999. J Neurosci. 1999. PMID: 10414991 Free PMC article. - Modeling prenatal opioid exposure in animals: Current findings and future directions.
Byrnes EM, Vassoler FM. Byrnes EM, et al. Front Neuroendocrinol. 2018 Oct;51:1-13. doi: 10.1016/j.yfrne.2017.09.001. Epub 2017 Sep 28. Front Neuroendocrinol. 2018. PMID: 28965857 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical