Role of nitric oxide on motor behavior - PubMed (original) (raw)
Review
Role of nitric oxide on motor behavior
E A Del Bel et al. Cell Mol Neurobiol. 2005 Mar.
Abstract
The present review paper describes results indicating the influence of nitric oxide (NO) on motor control. Our last studies showed that systemic injections of low doses of inhibitors of NO synthase (NOS), the enzyme responsible for NO formation, induce anxiolytic effects in the elevated plus maze whereas higher doses decrease maze exploration. Also, NOS inhibitors decrease locomotion and rearing in an open field arena. These results may involve motor effects of this compounds, since inhibitors of NOS, NG-nitro-L-arginine (L-NOARG), N(G)-nitro-L-arginine methylester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), and 7-Nitroindazole (7-NIO), induced catalepsy in mice. This effect was also found in rats after systemic, intracebroventricular or intrastriatal administration. Acute administration of L-NOARG has an additive cataleptic effect with haloperidol, a dopamine D2 antagonist. The catalepsy is also potentiated by WAY 100135 (5-HT1a receptor antagonist), ketanserin (5HT2a and alfal adrenergic receptor antagonist), and ritanserin (5-HT2a and 5HT2c receptor antagonist). Atropine sulfate and biperiden, antimuscarinic drugs, block L-NOARG-induced catalepsy in mice. L-NOARG subchronic administration in mice induces rapid tolerance (3 days) to its cataleptic effects. It also produces cross-tolerance to haloperidol-induced catalepsy. After subchronic L-NOARG treatment there is an increase in the density NADPH-d positive neurons in the dorsal part of nucleus caudate-putamen, nucleus accumbens, and tegmental pedunculupontinus nucleus. In contrast, this treatment decreases NADPH-d neuronal number in the substantia nigra compacta. Considering these results we suggest that (i) NO may modulate motor behavior, probably by interfering with dopaminergic, serotonergic, and cholinergic neurotransmission in the striatum; (ii) Subchronic NO synthesis inhibition induces plastic changes in NO-producing neurons in brain areas related to motor control and causes cross-tolerance to the cataleptic effect of haloperidol, raising the possibility that such treatments could decrease motor side effects associated with antipsychotic medications. Finally, recent studies using experimental Parkinson's disease models suggest an interaction between NO system and neurodegenerative processes in the nigrostriatal pathway. It provides evidence of a protective role of NO. Together, our results indicate that NO may be a key participant on physiological and pathophysiological processes in the nigrostriatal system.
Similar articles
- Sub-chronic inhibition of nitric-oxide synthesis modifies haloperidol-induced catalepsy and the number of NADPH-diaphorase neurons in mice.
Del Bel EA, Guimarães FS. Del Bel EA, et al. Psychopharmacology (Berl). 2000 Jan;147(4):356-61. doi: 10.1007/s002130050003. Psychopharmacology (Berl). 2000. PMID: 10672628 - Motor effects of acute and chronic inhibition of nitric oxide synthesis in mice.
Del Bel EA, Souza AS, Guimarães FS, da-Silva CA, Nucci-da-Silva LP. Del Bel EA, et al. Psychopharmacology (Berl). 2002 Apr;161(1):32-7. doi: 10.1007/s00213-002-1009-2. Epub 2002 Feb 15. Psychopharmacology (Berl). 2002. PMID: 11967628 - Tolerance to the cataleptic effect that follows repeated nitric oxide synthase inhibition may be related to functional enzymatic recovery.
Del-Bel EA, Guimarães FS, Joca SR, Echeverry MB, Ferreira FR. Del-Bel EA, et al. J Psychopharmacol. 2010 Mar;24(3):397-405. doi: 10.1177/0269881108097717. Epub 2008 Oct 6. J Psychopharmacol. 2010. PMID: 18838497 - Role of nitric oxide in motor control: implications for Parkinson's disease pathophysiology and treatment.
Del-Bel E, Padovan-Neto FE, Raisman-Vozari R, Lazzarini M. Del-Bel E, et al. Curr Pharm Des. 2011;17(5):471-88. doi: 10.2174/138161211795164176. Curr Pharm Des. 2011. PMID: 21375483 Review. - Role of nitric oxide in brain regions related to defensive reactions.
Guimarães FS, Beijamini V, Moreira FA, Aguiar DC, de Lucca AC. Guimarães FS, et al. Neurosci Biobehav Rev. 2005;29(8):1313-22. doi: 10.1016/j.neubiorev.2005.03.026. Epub 2005 Aug 10. Neurosci Biobehav Rev. 2005. PMID: 16095696 Review.
Cited by
- Levodopa-induced dyskinesias in Parkinson's disease increase cerebrospinal fluid nitric oxide metabolites' levels.
Santos-Lobato BL, Bortolanza M, Pinheiro LC, Batalhão ME, Pimentel ÂV, Capellari-Carnio E, Del-Bel EA, Tumas V. Santos-Lobato BL, et al. J Neural Transm (Vienna). 2022 Jan;129(1):55-63. doi: 10.1007/s00702-021-02447-4. Epub 2021 Dec 23. J Neural Transm (Vienna). 2022. PMID: 34940921 - Nitric oxide potentiation of locomotor activity in the spinal cord of the lamprey.
Kyriakatos A, Molinari M, Mahmood R, Grillner S, Sillar KT, El Manira A. Kyriakatos A, et al. J Neurosci. 2009 Oct 21;29(42):13283-91. doi: 10.1523/JNEUROSCI.3069-09.2009. J Neurosci. 2009. PMID: 19846716 Free PMC article. - Anxiolytic effects induced by inhibition of the nitric oxide-cGMP pathway in the rat dorsal hippocampus.
Spolidório PC, Echeverry MB, Iyomasa M, Guimarães FS, Del Bel EA. Spolidório PC, et al. Psychopharmacology (Berl). 2007 Dec;195(2):183-92. doi: 10.1007/s00213-007-0890-0. Epub 2007 Jul 28. Psychopharmacology (Berl). 2007. PMID: 17661019 - Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice.
Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T. Tanda K, et al. Mol Brain. 2009 Jun 18;2:19. doi: 10.1186/1756-6606-2-19. Mol Brain. 2009. PMID: 19538708 Free PMC article. - Nitric Oxide-Soluble Guanylyl Cyclase-Cyclic GMP Signaling in the Striatum: New Targets for the Treatment of Parkinson's Disease?
West AR, Tseng KY. West AR, et al. Front Syst Neurosci. 2011 Jun 30;5:55. doi: 10.3389/fnsys.2011.00055. eCollection 2011. Front Syst Neurosci. 2011. PMID: 21747761 Free PMC article.
References
- Abekawa, T., Ohmori, T., and Koyama, T. (1994). Effect of NO synthase inhibition on behavioral changes induced by a single administration of methamphetamine. Brain Res.666:147–150. - PubMed
- Agid, Y., Javoy-Agid, F., and Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. In Marsden, C. D., and Fahn, S. (eds.), Movement Disorders, Butterworths, London, pp. 166–230.
- Allikmets, L. H., Zarkovsky, A. M., and Nurk, A. M. (1981). Changes in catalepsy and receptor sensitivity following chronic neuroleptic treatment. Eur. J. Pharmacol.75:145–147. - PubMed
- Amalric, M., Moukhles, H., Nieoullon, A., and Daszuta, A. (1995). Complex deficits on reaction time performance following bilateral intrastriatal 6-OHDA infusion in the rat. Eur. J. Neurosci.7:972–980. - PubMed
- Araki, T., Mizutani, H., Matsubara, M., Imai, Y., Mizugaki, M., and Itoyama, Y. (2001). Nitric oxide synthase inhibitors cause motor deficits in mice. Eur. Neuropsychopharmacol.11:125–133. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources