Genome-wide aberrations in pancreatic adenocarcinoma - PubMed (original) (raw)
Genome-wide aberrations in pancreatic adenocarcinoma
Norma J Nowak et al. Cancer Genet Cytogenet. 2005 Aug.
Abstract
Chromosomal instability, manifesting as copy number alterations (CNAs), is characteristic of pancreatic adenocarcinoma. We used bacterial artificial chromosome (BAC) array-based comparative genomic hybridization (aCGH) to examine the pancreatic adenocarcinoma genome for submicroscopic amplifications and deletions. Profiles of 33 samples (17 first-passage xenografts and 16 cell lines) identified numerous chromosomal regions with CNAs, including losses at 1p36.33 approximately p34.3, 1p13.3 approximately p13.2, 3p26, 3p25.2 approximately p22.3, 3p22.1 approximately p14.1, 4q28.3, 4q31, 4q35.1, 5q14.3, 6p, 6q, 8p23.3 approximately p12, 9p, 9q22.32 approximately q31.1, 13q33.2, 15q11.2, 16p13.3, 17p, 18q11.21 approximately q23 , 19p13.3 approximately p13.12, 19q13.2, 21p, 21q, and 22p, 22q and gains at 7p21.1 approximately p11.2, 7q31.32, 7q33, 8q11.1 approximately q24, 11p13, 14q22.2, 20p12.2, and 20q11.23 approximately q13.33. Novel regions containing CNAs were identified and refined by combining the increased resolution of our BAC CGH array with a statistical algorithm developed for assigning significance values to altered BACs across samples. A subset of array-based CNAs was validated using polymerase chain reaction-based techniques, immunohistochemistry and fluorescence in situ hybridization. BAC aCGH proved to be a powerful genome-wide strategy to identify molecular alterations in pancreatic cancer and to distinguish differences between cell line and xenograft aberration profiles. These findings should greatly facilitate further research in understanding the pathogenesis of this lethal disease, and could lead to the identification of novel therapeutic targets and biomarkers for early detection.
Similar articles
- Genomic alterations in lung adenocarcinomas detected by multicolor fluorescence in situ hybridization and comparative genomic hybridization.
Shen H, Zhu Y, Wu YJ, Qiu HR, Shu YQ. Shen H, et al. Cancer Genet Cytogenet. 2008 Mar;181(2):100-7. doi: 10.1016/j.cancergencyto.2007.11.012. Cancer Genet Cytogenet. 2008. PMID: 18295661 - Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization.
Hosoya N, Sanada M, Nannya Y, Nakazaki K, Wang L, Hangaishi A, Kurokawa M, Chiba S, Ogawa S. Hosoya N, et al. Genes Chromosomes Cancer. 2006 May;45(5):482-94. doi: 10.1002/gcc.20303. Genes Chromosomes Cancer. 2006. PMID: 16425296 - Sub-megabase resolution tiling (SMRT) array-based comparative genomic hybridization profiling reveals novel gains and losses of chromosomal regions in Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma cell lines.
Fadlelmola FM, Zhou M, de Leeuw RJ, Dosanjh NS, Harmer K, Huntsman D, Lam WL, Banerjee D. Fadlelmola FM, et al. Mol Cancer. 2008 Jan 7;7:2. doi: 10.1186/1476-4598-7-2. Mol Cancer. 2008. PMID: 18179710 Free PMC article. - Molecular cytogenetic characterization of pancreas cancer cell lines reveals high complexity chromosomal alterations.
Griffin CA, Morsberger L, Hawkins AL, Haddadin M, Patel A, Ried T, Schrock E, Perlman EJ, Jaffee E. Griffin CA, et al. Cytogenet Genome Res. 2007;118(2-4):148-56. doi: 10.1159/000108295. Cytogenet Genome Res. 2007. PMID: 18000365 Review. - Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era.
Mosse YP, Greshock J, Weber BL, Maris JM. Mosse YP, et al. Cancer Lett. 2005 Oct 18;228(1-2):83-90. doi: 10.1016/j.canlet.2005.02.052. Cancer Lett. 2005. PMID: 15967571 Review.
Cited by
- The molecular biology of pancreatic cancer.
Abramson MA, Jazag A, van der Zee JA, Whang EE. Abramson MA, et al. Gastrointest Cancer Res. 2007;1(4 Suppl 2):S7-S12. Gastrointest Cancer Res. 2007. PMID: 19360152 Free PMC article. - Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer.
Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H, Chu GC, Zhang JX, Sahin E, Yeo G, Ponugoti A, Nabioullin R, Deroo S, Yang S, Wang X, McGrath JP, Protopopova M, Ivanova E, Zhang J, Feng B, Tsao MS, Redston M, Protopopov A, Xiao Y, Futreal PA, Hahn WC, Klimstra DS, Chin L, DePinho RA. Kimmelman AC, et al. Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19372-7. doi: 10.1073/pnas.0809966105. Epub 2008 Dec 2. Proc Natl Acad Sci U S A. 2008. PMID: 19050074 Free PMC article. - Prognostic value of PDL1 expression in pancreatic cancer.
Birnbaum DJ, Finetti P, Lopresti A, Gilabert M, Poizat F, Turrini O, Raoul JL, Delpero JR, Moutardier V, Birnbaum D, Mamessier E, Bertucci F. Birnbaum DJ, et al. Oncotarget. 2016 Nov 1;7(44):71198-71210. doi: 10.18632/oncotarget.11685. Oncotarget. 2016. PMID: 27589570 Free PMC article. - Association of mitotic regulation pathway polymorphisms with pancreatic cancer risk and outcome.
Couch FJ, Wang X, Bamlet WR, de Andrade M, Petersen GM, McWilliams RR. Couch FJ, et al. Cancer Epidemiol Biomarkers Prev. 2010 Jan;19(1):251-7. doi: 10.1158/1055-9965.EPI-09-0629. Cancer Epidemiol Biomarkers Prev. 2010. PMID: 20056645 Free PMC article. - Identification of genetic alterations in pancreatic cancer by the combined use of tissue microdissection and array-based comparative genomic hybridisation.
Harada T, Baril P, Gangeswaran R, Kelly G, Chelala C, Bhakta V, Caulee K, Mahon PC, Lemoine NR. Harada T, et al. Br J Cancer. 2007 Jan 29;96(2):373-82. doi: 10.1038/sj.bjc.6603563. Br J Cancer. 2007. PMID: 17242705 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials