Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC - PubMed (original) (raw)
. 2005 Oct 7;280(40):33785-91.
doi: 10.1074/jbc.M505742200. Epub 2005 Aug 8.
Affiliations
- PMID: 16087673
- DOI: 10.1074/jbc.M505742200
Free article
Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC
Annie Hiniker et al. J Biol Chem. 2005.
Free article
Abstract
In Escherichia coli, the periplasmic disulfide oxidoreductase DsbA is thought to be a powerful but nonspecific oxidant, joining cysteines together the moment they enter the periplasm. DsbC, the primary disulfide isomerase, likely resolves incorrect disulfides. Given the reliance of protein function on correct disulfide bonds, it is surprising that no phenotype has been established for null mutations in dsbC. Here we demonstrate that mutations in the entire DsbC disulfide isomerization pathway cause an increased sensitivity to the redox-active metal copper. We find that copper catalyzes periplasmic disulfide bond formation under aerobic conditions and that copper catalyzes the formation of disulfide-bonded oligomers in vitro, which DsbC can resolve. Our data suggest that the copper sensitivity of dsbC- strains arises from the inability of the cell to rearrange copper-catalyzed non-native disulfides in the absence of functional DsbC. Absence of functional DsbA augments the deleterious effects of copper on a dsbC- strain, even though the dsbA- single mutant is unaffected by copper. This may indicate that DsbA successfully competes with copper and forms disulfide bonds more accurately than copper does. These findings lead us to a model in which DsbA may be significantly more accurate in disulfide oxidation than previously thought, and in which the primary role of DsbC may be to rearrange incorrect disulfide bonds that are formed during certain oxidative stresses.
Similar articles
- DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.
Maskos K, Huber-Wunderlich M, Glockshuber R. Maskos K, et al. J Mol Biol. 2003 Jan 17;325(3):495-513. doi: 10.1016/s0022-2836(02)01248-2. J Mol Biol. 2003. PMID: 12498799 - Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
Segatori L, Paukstelis PJ, Gilbert HF, Georgiou G. Segatori L, et al. Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10018-23. doi: 10.1073/pnas.0403003101. Epub 2004 Jun 25. Proc Natl Acad Sci U S A. 2004. PMID: 15220477 Free PMC article. - The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner.
Vertommen D, Depuydt M, Pan J, Leverrier P, Knoops L, Szikora JP, Messens J, Bardwell JC, Collet JF. Vertommen D, et al. Mol Microbiol. 2008 Jan;67(2):336-49. doi: 10.1111/j.1365-2958.2007.06030.x. Epub 2007 Nov 25. Mol Microbiol. 2008. PMID: 18036138 Free PMC article. - Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm.
Nakamoto H, Bardwell JC. Nakamoto H, et al. Biochim Biophys Acta. 2004 Nov 11;1694(1-3):111-9. doi: 10.1016/j.bbamcr.2004.02.012. Biochim Biophys Acta. 2004. PMID: 15546661 Review.
Cited by
- Evidence for conformational changes within DsbD: possible role for membrane-embedded proline residues.
Hiniker A, Vertommen D, Bardwell JC, Collet JF. Hiniker A, et al. J Bacteriol. 2006 Oct;188(20):7317-20. doi: 10.1128/JB.00383-06. J Bacteriol. 2006. PMID: 17015672 Free PMC article. - Acinetobacter baumannii Can Survive with an Outer Membrane Lacking Lipooligosaccharide Due to Structural Support from Elongasome Peptidoglycan Synthesis.
Simpson BW, Nieckarz M, Pinedo V, McLean AB, Cava F, Trent MS. Simpson BW, et al. mBio. 2021 Dec 21;12(6):e0309921. doi: 10.1128/mBio.03099-21. Epub 2021 Nov 30. mBio. 2021. PMID: 34844428 Free PMC article. - C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning.
Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. Banaś AM, et al. PLoS One. 2020 Mar 23;15(3):e0230366. doi: 10.1371/journal.pone.0230366. eCollection 2020. PLoS One. 2020. PMID: 32203539 Free PMC article. - Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain.
Bocian-Ostrzycka KM, Łasica AM, Dunin-Horkawicz S, Grzeszczuk MJ, Drabik K, Dobosz AM, Godlewska R, Nowak E, Collet JF, Jagusztyn-Krynicka EK. Bocian-Ostrzycka KM, et al. Front Microbiol. 2015 Oct 8;6:1065. doi: 10.3389/fmicb.2015.01065. eCollection 2015. Front Microbiol. 2015. PMID: 26500620 Free PMC article. - Adaptive Mechanisms of Shewanella xiamenensis DCB 2-1 Metallophilicity.
Abuladze M, Asatiani N, Kartvelishvili T, Krivonos D, Popova N, Safonov A, Sapojnikova N, Yushin N, Zinicovscaia I. Abuladze M, et al. Toxics. 2023 Mar 25;11(4):304. doi: 10.3390/toxics11040304. Toxics. 2023. PMID: 37112530 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases