Metabolic energetics and genetics in the heart - PubMed (original) (raw)
Review
Metabolic energetics and genetics in the heart
Heinrich Taegtmeyer et al. Ann N Y Acad Sci. 2005 Jun.
Abstract
From the first stages of differentiation in the embryo to the end of life, energy substrate metabolism and function are inextricably linked features of the heart. The principle of energy substrate metabolism is simple. For a given developmental stage and for a given environment, the heart oxidizes the most efficient fuel on the path to ATP. The "multitasking" of energy substrate metabolism in the heart entails more than the generation of reducing equivalents for oxidative phosphorylation of ADP in the respiratory chain. In the postnatal heart, substrate switching and metabolic flexibility are features of normal function. In the stressed heart, metabolic remodeling precedes, triggers, and sustains functional and structural remodeling. This manuscript reviews the pleiotropic actions of metabolism in energy transfer, signal transduction, cardiac growth, gene expression, and viability. Examples are presented to illustrate that metabolic signals of stressed and failing heart are the product of complex cellular processes. An early feature of the maladapted heart is a loss of metabolic flexibility. The example of lipotoxic heart failure illustrates the concept of sustained metabolic dysregulation as a cause of contractile dysfunction of the heart. Thus, a paradigm emerges in which metabolic signals not only regulate fluxes through enzyme catalyzed reactions in existing metabolic pathways, but also regulate transcriptional, translational, and post-translational signaling in the heart. As new insights are gained into metabolic adaptation and maladaptation of the heart, metabolic modulation may become an effective strategy for the treatment of heart failure.
Similar articles
- Linking gene expression to function: metabolic flexibility in the normal and diseased heart.
Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Taegtmeyer H, et al. Ann N Y Acad Sci. 2004 May;1015:202-13. doi: 10.1196/annals.1302.017. Ann N Y Acad Sci. 2004. PMID: 15201161 Review. - Myocardial substrate metabolism in the normal and failing heart.
Stanley WC, Recchia FA, Lopaschuk GD. Stanley WC, et al. Physiol Rev. 2005 Jul;85(3):1093-129. doi: 10.1152/physrev.00006.2004. Physiol Rev. 2005. PMID: 15987803 Review. - Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-alpha-null hearts can be rescued by increasing glucose transport and utilization.
Luptak I, Balschi JA, Xing Y, Leone TC, Kelly DP, Tian R. Luptak I, et al. Circulation. 2005 Oct 11;112(15):2339-46. doi: 10.1161/CIRCULATIONAHA.105.534594. Epub 2005 Oct 3. Circulation. 2005. PMID: 16203912 - Transgenesis and cardiac energetics: new insights into cardiac metabolism.
Ingwall JS. Ingwall JS. J Mol Cell Cardiol. 2004 Sep;37(3):613-23. doi: 10.1016/j.yjmcc.2004.05.020. J Mol Cell Cardiol. 2004. PMID: 15350834 Review. - Metabolic and signaling alterations in dystrophin-deficient hearts precede overt cardiomyopathy.
Khairallah M, Khairallah R, Young ME, Dyck JR, Petrof BJ, Des Rosiers C. Khairallah M, et al. J Mol Cell Cardiol. 2007 Aug;43(2):119-29. doi: 10.1016/j.yjmcc.2007.05.015. Epub 2007 May 24. J Mol Cell Cardiol. 2007. PMID: 17583724
Cited by
- Enhancing mitochondrial pyruvate metabolism ameliorates ischemic reperfusion injury in the heart.
Visker JR, Cluntun AA, Velasco-Silva JN, Eberhardt DR, Cedeño-Rosario L, Shankar TS, Hamouche R, Ling J, Kwak H, Hillas JY, Aist I, Tseliou E, Navankasattusas S, Chaudhuri D, Ducker GS, Drakos SG, Rutter J. Visker JR, et al. JCI Insight. 2024 Jul 25;9(17):e180906. doi: 10.1172/jci.insight.180906. JCI Insight. 2024. PMID: 39052437 Free PMC article. - Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date.
Athithan L, Gulsin GS, McCann GP, Levelt E. Athithan L, et al. World J Diabetes. 2019 Oct 15;10(10):490-510. doi: 10.4239/wjd.v10.i10.490. World J Diabetes. 2019. PMID: 31641426 Free PMC article. Review. - Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice.
Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T, Brown JH, Murphy E, Molkentin JD. Elrod JW, et al. J Clin Invest. 2010 Oct;120(10):3680-7. doi: 10.1172/JCI43171. Epub 2010 Sep 20. J Clin Invest. 2010. PMID: 20890047 Free PMC article. - Increased myocardial susceptibility to repetitive ischemia with high-fat diet-induced obesity.
Thakker GD, Frangogiannis NG, Zymek PT, Sharma S, Raya JL, Barger PM, Taegtmeyer H, Entman ML, Ballantyne CM. Thakker GD, et al. Obesity (Silver Spring). 2008 Dec;16(12):2593-600. doi: 10.1038/oby.2008.414. Epub 2008 Oct 2. Obesity (Silver Spring). 2008. PMID: 18833212 Free PMC article. - Energy metabolism in heart failure and remodelling.
Ingwall JS. Ingwall JS. Cardiovasc Res. 2009 Feb 15;81(3):412-9. doi: 10.1093/cvr/cvn301. Epub 2008 Nov 5. Cardiovasc Res. 2009. PMID: 18987051 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials