Prediction of radiation sensitivity using a gene expression classifier - PubMed (original) (raw)
. 2005 Aug 15;65(16):7169-76.
doi: 10.1158/0008-5472.CAN-05-0656.
Steven Eschrich, Haiyan Zhao, Gregory Bloom, Jimmy Sung, Susan McCarthy, Alan B Cantor, Anna Scuto, Changgong Li, Suming Zhang, Richard Jove, Timothy Yeatman
Affiliations
- PMID: 16103067
- DOI: 10.1158/0008-5472.CAN-05-0656
Prediction of radiation sensitivity using a gene expression classifier
Javier F Torres-Roca et al. Cancer Res. 2005.
Abstract
The development of a successful radiation sensitivity predictive assay has been a major goal of radiation biology for several decades. We have developed a radiation classifier that predicts the inherent radiosensitivity of tumor cell lines as measured by survival fraction at 2 Gy (SF2), based on gene expression profiles obtained from the literature. Our classifier correctly predicts the SF2 value in 22 of 35 cell lines from the National Cancer Institute panel of 60, a result significantly different from chance (P = 0.0002). In our approach, we treat radiation sensitivity as a continuous variable, significance analysis of microarrays is used for gene selection, and a multivariate linear regression model is used for radiosensitivity prediction. The gene selection step identified three novel genes (RbAp48, RGS19, and R5PIA) of which expression values are correlated with radiation sensitivity. Gene expression was confirmed by quantitative real-time PCR. To biologically validate our classifier, we transfected RbAp48 into three cancer cell lines (HS-578T, MALME-3M, and MDA-MB-231). RbAp48 overexpression induced radiosensitization (1.5- to 2-fold) when compared with mock-transfected cell lines. Furthermore, we show that HS-578T-RbAp48 overexpressors have a higher proportion of cells in G2-M (27% versus 5%), the radiosensitive phase of the cell cycle. Finally, RbAp48 overexpression is correlated with dephosphorylation of Akt, suggesting that RbAp48 may be exerting its effect by antagonizing the Ras pathway. The implications of our findings are significant. We establish that radiation sensitivity can be predicted based on gene expression profiles and we introduce a genomic approach to the identification of novel molecular markers of radiation sensitivity.
Similar articles
- Arpc1b gene is a candidate prediction marker for choroidal malignant melanomas sensitive to radiotherapy.
Kumagai K, Nimura Y, Mizota A, Miyahara N, Aoki M, Furusawa Y, Takiguchi M, Yamamoto S, Seki N. Kumagai K, et al. Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2300-4. doi: 10.1167/iovs.05-0810. Invest Ophthalmol Vis Sci. 2006. PMID: 16723437 - Radiation-inducible protein RbAp48 contributes to radiosensitivity of cervical cancer cells.
Zheng L, Tang W, Wei F, Wang H, Liu J, Lu Y, Cheng Y, Bai X, Yu X, Zhao W. Zheng L, et al. Gynecol Oncol. 2013 Sep;130(3):601-8. doi: 10.1016/j.ygyno.2013.06.002. Epub 2013 Jun 10. Gynecol Oncol. 2013. PMID: 23756179 - A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status.
Williams JR, Zhang Y, Zhou H, Gridley DS, Koch CJ, Russell J, Slater JS, Little JB. Williams JR, et al. Int J Radiat Biol. 2008 Apr;84(4):253-64. doi: 10.1080/09553000801953342. Int J Radiat Biol. 2008. PMID: 18386191 Review. - Personalized medicine in radiation oncology and radiation sensitivity index: Pathbreaking genomic way to define the role of radiation in cancer management.
Mondal D, Pareek V, Barthwal M. Mondal D, et al. J Cancer Res Ther. 2023 Jan 1;19(Suppl 2):S508-S512. doi: 10.4103/jcrt.jcrt_508_23. Epub 2024 Feb 21. J Cancer Res Ther. 2023. PMID: 38384012 Review.
Cited by
- Calibrating tumor growth and invasion parameters with spectral spatial analysis of cancer biopsy tissues.
Pasetto S, Montejo M, Zahid MU, Rosa M, Gatenby R, Schlicke P, Diaz R, Enderling H. Pasetto S, et al. NPJ Syst Biol Appl. 2024 Oct 2;10(1):112. doi: 10.1038/s41540-024-00439-0. NPJ Syst Biol Appl. 2024. PMID: 39358360 Free PMC article. - Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer.
Wurlitzer M, Möckelmann N, Kriegs M, Vens M, Omidi M, Hoffer K, Bargen CV, Möller-Koop C, Witt M, Droste C, Oetting A, Petersen H, Busch CJ, Münscher A, Schlüter H, Clauditz TS, Rieckmann T. Wurlitzer M, et al. Cancers (Basel). 2020 Jun 11;12(6):1531. doi: 10.3390/cancers12061531. Cancers (Basel). 2020. PMID: 32545200 Free PMC article. - A gene expression model of intrinsic tumor radiosensitivity: prediction of response and prognosis after chemoradiation.
Eschrich SA, Pramana J, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Rocha-Lima C, Kelley S, Calvin DP, Yeatman TJ, Begg AC, Torres-Roca JF. Eschrich SA, et al. Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):489-96. doi: 10.1016/j.ijrobp.2009.06.014. Int J Radiat Oncol Biol Phys. 2009. PMID: 19735873 Free PMC article. Clinical Trial. - The Prognostic and Predictive Value of Genomic Assays in Guiding Adjuvant Breast Radiation Therapy.
Beyer SJ, Tallman M, Jhawar SR, White JR, Bazan JG. Beyer SJ, et al. Biomedicines. 2022 Dec 30;11(1):98. doi: 10.3390/biomedicines11010098. Biomedicines. 2022. PMID: 36672606 Free PMC article. Review. - Using the Radiosensitivity Index (RSI) to Predict Pelvic Failure in Endometrial Cancer Treated With Adjuvant Radiation Therapy.
Mohammadi H, Prince A, Figura NB, Peacock JS, Fernandez DC, Montejo ME, Chon HS, Wenham RM, Eschrich SA, Torres-Roca JF, Ahmed KA. Mohammadi H, et al. Int J Radiat Oncol Biol Phys. 2020 Mar 1;106(3):496-502. doi: 10.1016/j.ijrobp.2019.11.013. Epub 2019 Nov 20. Int J Radiat Oncol Biol Phys. 2020. PMID: 31759077 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
- K-24-CA85429-04/CA/NCI NIH HHS/United States
- K08 CA108926-01/CA/NCI NIH HHS/United States
- R01-CA098522-01/CA/NCI NIH HHS/United States
- U01-CA85052-02/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous