Mitochondrial dysfunction and possible treatments in Parkinson's disease--a review - PubMed (original) (raw)
Mitochondrial dysfunction and possible treatments in Parkinson's disease--a review
Clifford W Shults. Mitochondrion. 2004 Sep.
Abstract
Mitochondria are central not only to the bioenergetics of the cell but also to the process of apoptotic cell death. Substantial data indicate mitochondrial dysfunction, particularly of complex I of the electron transport chain, in some patients with Parkinson's disease (PD), and it appears likely that mitochondria contribute to the pathogenic processes that occurs in this disorder. Treatments targeted at mitochondrial function hold promise to slow the progression of PD.
Similar articles
- Therapeutic role of coenzyme Q(10) in Parkinson's disease.
Shults CW. Shults CW. Pharmacol Ther. 2005 Jul;107(1):120-30. doi: 10.1016/j.pharmthera.2005.02.002. Epub 2005 Apr 21. Pharmacol Ther. 2005. PMID: 15963354 Review. - Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.
Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR. Arduíno DM, et al. Neurochem Int. 2009 Sep;55(5):341-8. doi: 10.1016/j.neuint.2009.04.004. Epub 2009 Apr 16. Neurochem Int. 2009. PMID: 19375464 - Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease.
Sun F, Kanthasamy A, Anantharam V, Kanthasamy AG. Sun F, et al. Pharmacol Ther. 2007 Jun;114(3):327-44. doi: 10.1016/j.pharmthera.2007.04.001. Epub 2007 Apr 19. Pharmacol Ther. 2007. PMID: 17521740 Review. - Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease.
Chinta SJ, Andersen JK. Chinta SJ, et al. Free Radic Biol Med. 2006 Nov 1;41(9):1442-8. doi: 10.1016/j.freeradbiomed.2006.08.002. Epub 2006 Aug 7. Free Radic Biol Med. 2006. PMID: 17023271 - Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson's disease.
Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O. Choi HJ, et al. Neurochem Int. 2006 Mar;48(4):255-62. doi: 10.1016/j.neuint.2005.10.011. Epub 2005 Dec 15. Neurochem Int. 2006. PMID: 16343695
Cited by
- Oxygenomics in environmental stress.
Sone H, Akanuma H, Fukuda T. Sone H, et al. Redox Rep. 2010;15(3):98-114. doi: 10.1179/174329210X12650506623843. Redox Rep. 2010. PMID: 20594413 Free PMC article. Review. - Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled.
Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. Keeney PM, et al. J Neurosci. 2006 May 10;26(19):5256-64. doi: 10.1523/JNEUROSCI.0984-06.2006. J Neurosci. 2006. PMID: 16687518 Free PMC article. - Parkin and PINK1 functions in oxidative stress and neurodegeneration.
Barodia SK, Creed RB, Goldberg MS. Barodia SK, et al. Brain Res Bull. 2017 Jul;133:51-59. doi: 10.1016/j.brainresbull.2016.12.004. Epub 2016 Dec 23. Brain Res Bull. 2017. PMID: 28017782 Free PMC article. Review. - Advances in CNS PET: the state-of-the-art for new imaging targets for pathophysiology and drug development.
McCluskey SP, Plisson C, Rabiner EA, Howes O. McCluskey SP, et al. Eur J Nucl Med Mol Imaging. 2020 Feb;47(2):451-489. doi: 10.1007/s00259-019-04488-0. Epub 2019 Sep 21. Eur J Nucl Med Mol Imaging. 2020. PMID: 31541283 Free PMC article. Review. - Visualizing Dynamic Performance of Lipid Droplets in a Parkinson's Disease Model via a Smart Photostable Aggregation-Induced Emission Probe.
Li L, Zhou F, Gao Q, Lu Y, Xu X, Hu R, Wang Z, Peng M, Yang Z, Tang BZ. Li L, et al. iScience. 2019 Nov 22;21:261-272. doi: 10.1016/j.isci.2019.10.027. Epub 2019 Oct 18. iScience. 2019. PMID: 31677478 Free PMC article.