Hematopoiesis in the yolk sac: more than meets the eye - PubMed (original) (raw)
Review
Hematopoiesis in the yolk sac: more than meets the eye
Kathleen E McGrath et al. Exp Hematol. 2005 Sep.
Free article
Abstract
The first blood cells observed in the embryo are large nucleated erythroblasts generated in blood islands of the extraembryonic yolk sac. These unique red cells have been termed primitive because of their resemblance to nucleated erythroblasts of nonmammalian species. It is now widely assumed that hematopoiesis in the yolk sac is "primitive" and that "definitive" hematopoiesis has its origins in the aorta/gonad/mesonephros (AGM) region. Recent studies of yolk sac hematopoiesis have challenged several aspects of this paradigm. First, primitive erythropoiesis in mammals shares many features with definitive erythropoiesis, including progressive erythroblast maturation leading to the circulation of enucleated erythrocytes. Second, the emergence of primitive erythroid progenitors in the yolk sac prior to somitogenesis may be associated with the macrophage and megakaryocyte lineages, raising the possibility that "primitive" hematopoiesis may be multilineage in nature. Third, a second wave of hematopoietic progenitors emerge from the yolk sac during early somitogenesis that consists of multiple myeloid lineages that are temporally and spatially associated with definitive erythroid progenitors. These "definitive" hematopoietic progenitors expand in numbers in the yolk sac and are thought to seed the fetal liver and generate the first definitive blood cells that rapidly emerge from the liver. Recent findings support a model of hematopoietic ontogeny in which the conceptus' first maturing blood cells and committed progenitors are provided by the yolk sac, allowing survival until AGM-derived hematopoietic stem cells can emerge, seed the liver and differentiate into mature blood cells.
Similar articles
- Ontogeny of erythropoiesis in the mammalian embryo.
McGrath K, Palis J. McGrath K, et al. Curr Top Dev Biol. 2008;82:1-22. doi: 10.1016/S0070-2153(07)00001-4. Curr Top Dev Biol. 2008. PMID: 18282515 Review. - Ontogeny of erythropoiesis.
Palis J. Palis J. Curr Opin Hematol. 2008 May;15(3):155-61. doi: 10.1097/MOH.0b013e3282f97ae1. Curr Opin Hematol. 2008. PMID: 18391778 Review. - Erythropoietin-receptor expression and function during the initiation of murine yolk sac erythropoiesis.
McGann JK, Silver L, Liesveld J, Palis J. McGann JK, et al. Exp Hematol. 1997 Oct;25(11):1149-57. Exp Hematol. 1997. PMID: 9328451 - Definitive erythropoiesis in chicken yolk sac.
Nagai H, Sheng G. Nagai H, et al. Dev Dyn. 2008 Nov;237(11):3332-41. doi: 10.1002/dvdy.21746. Dev Dyn. 2008. PMID: 18924232
Cited by
- Defining the cause of skewed X-chromosome inactivation in X-linked mental retardation by use of a mouse model.
Muers MR, Sharpe JA, Garrick D, Sloane-Stanley J, Nolan PM, Hacker T, Wood WG, Higgs DR, Gibbons RJ. Muers MR, et al. Am J Hum Genet. 2007 Jun;80(6):1138-49. doi: 10.1086/518369. Epub 2007 Apr 25. Am J Hum Genet. 2007. PMID: 17503331 Free PMC article. - Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding.
Alhashem YN, Vinjamur DS, Basu M, Klingmüller U, Gaensler KM, Lloyd JA. Alhashem YN, et al. J Biol Chem. 2011 Jul 15;286(28):24819-27. doi: 10.1074/jbc.M111.247536. Epub 2011 May 24. J Biol Chem. 2011. PMID: 21610079 Free PMC article. - Training the Fetal Immune System Through Maternal Inflammation-A Layered Hygiene Hypothesis.
Apostol AC, Jensen KDC, Beaudin AE. Apostol AC, et al. Front Immunol. 2020 Feb 11;11:123. doi: 10.3389/fimmu.2020.00123. eCollection 2020. Front Immunol. 2020. PMID: 32117273 Free PMC article. Review. - Development and function of tissue resident macrophages in mice.
Kierdorf K, Prinz M, Geissmann F, Gomez Perdiguero E. Kierdorf K, et al. Semin Immunol. 2015 Dec;27(6):369-78. doi: 10.1016/j.smim.2016.03.017. Epub 2016 Mar 29. Semin Immunol. 2015. PMID: 27036090 Free PMC article. Review. - Embryonic Intra-Aortic Clusters Undergo Myeloid Differentiation Mediated by Mesonephros-Derived CSF1 in Mouse.
Sasaki T, Tanaka Y, Kulkeaw K, Yumine-Takai A, Tan KS, Nishinakamura R, Ishida J, Fukamizu A, Sugiyama D. Sasaki T, et al. Stem Cell Rev Rep. 2016 Oct;12(5):530-542. doi: 10.1007/s12015-016-9668-2. Stem Cell Rev Rep. 2016. PMID: 27324145