Regulation of bacterial gene expression by riboswitches - PubMed (original) (raw)
Review
Regulation of bacterial gene expression by riboswitches
Wade C Winkler et al. Annu Rev Microbiol. 2005.
Abstract
Riboswitches are structured domains that usually reside in the noncoding regions of mRNAs, where they bind metabolites and control gene expression. Like their protein counterparts, these RNA gene control elements form highly specific binding pockets for the target metabolite and undergo allosteric changes in structure. Numerous classes of riboswitches are present in bacteria and they comprise a common and robust metabolite-sensing system.
Similar articles
- An mRNA structure that controls gene expression by binding S-adenosylmethionine.
Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. Winkler WC, et al. Nat Struct Biol. 2003 Sep;10(9):701-7. doi: 10.1038/nsb967. Epub 2003 Aug 10. Nat Struct Biol. 2003. PMID: 12910260 - Bacterial gene regulation: from transcription attenuation to riboswitches and ribozymes.
Brantl S. Brantl S. Trends Microbiol. 2004 Nov;12(11):473-5. doi: 10.1016/j.tim.2004.09.008. Trends Microbiol. 2004. PMID: 15488385 - [The adenine riboswitch: a new gene regulation mechanism].
Lemay JF, Lafontaine DA. Lemay JF, et al. Med Sci (Paris). 2006 Dec;22(12):1053-9. doi: 10.1051/medsci/200622121053. Med Sci (Paris). 2006. PMID: 17156726 Review. French. - Riboswitches as versatile gene control elements.
Tucker BJ, Breaker RR. Tucker BJ, et al. Curr Opin Struct Biol. 2005 Jun;15(3):342-8. doi: 10.1016/j.sbi.2005.05.003. Curr Opin Struct Biol. 2005. PMID: 15919195 Review. - Riboswitches and the role of noncoding RNAs in bacterial metabolic control.
Winkler WC. Winkler WC. Curr Opin Chem Biol. 2005 Dec;9(6):594-602. doi: 10.1016/j.cbpa.2005.09.016. Epub 2005 Oct 13. Curr Opin Chem Biol. 2005. PMID: 16226486 Review.
Cited by
- Comparative Bioinformatics and Experimental Analysis of the Intergenic Regulatory Regions of Bacillus cereus hbl and nhe Enterotoxin Operons and the Impact of CodY on Virulence Heterogeneity.
Böhm ME, Krey VM, Jeßberger N, Frenzel E, Scherer S. Böhm ME, et al. Front Microbiol. 2016 May 24;7:768. doi: 10.3389/fmicb.2016.00768. eCollection 2016. Front Microbiol. 2016. PMID: 27252687 Free PMC article. - Post-transcriptional regulation of gene expression in Yersinia species.
Schiano CA, Lathem WW. Schiano CA, et al. Front Cell Infect Microbiol. 2012 Nov 9;2:129. doi: 10.3389/fcimb.2012.00129. eCollection 2012. Front Cell Infect Microbiol. 2012. PMID: 23162797 Free PMC article. Review. - In vitro selection and characterization of cellulose-binding DNA aptamers.
Boese BJ, Breaker RR. Boese BJ, et al. Nucleic Acids Res. 2007;35(19):6378-88. doi: 10.1093/nar/gkm708. Epub 2007 Sep 18. Nucleic Acids Res. 2007. PMID: 17881365 Free PMC article. - Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure.
Soukup GA. Soukup GA. Nucleic Acids Res. 2006 Feb 7;34(3):968-75. doi: 10.1093/nar/gkj497. Print 2006. Nucleic Acids Res. 2006. PMID: 16464827 Free PMC article. - Constraining Evolution of Alternaria alternata Resistance to a Demethylation Inhibitor (DMI) Fungicide Difenoconazole.
He MH, Wang YP, Wu EJ, Shen LL, Yang LN, Wang T, Shang LP, Zhu W, Zhan J. He MH, et al. Front Microbiol. 2019 Jul 10;10:1609. doi: 10.3389/fmicb.2019.01609. eCollection 2019. Front Microbiol. 2019. PMID: 31354690 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources