A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation - PubMed (original) (raw)
. 2005 Nov 11;280(45):37610-5.
doi: 10.1074/jbc.M508476200. Epub 2005 Sep 12.
Affiliations
- PMID: 16157583
- DOI: 10.1074/jbc.M508476200
Free article
A protein kinase C/Ras/ERK signaling pathway activates myeloid fibronectin receptors by altering beta1 integrin sialylation
Eric C Seales et al. J Biol Chem. 2005.
Free article
Abstract
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the beta1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of alpha5beta1 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylation-dependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified alpha5beta1 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the beta1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the beta1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.
Similar articles
- Hyposialylation of integrins stimulates the activity of myeloid fibronectin receptors.
Semel AC, Seales EC, Singhal A, Eklund EA, Colley KJ, Bellis SL. Semel AC, et al. J Biol Chem. 2002 Sep 6;277(36):32830-6. doi: 10.1074/jbc.M202493200. Epub 2002 Jun 28. J Biol Chem. 2002. PMID: 12091385 - Proteolytic shedding of ST6Gal-I by BACE1 regulates the glycosylation and function of alpha4beta1 integrins.
Woodard-Grice AV, McBrayer AC, Wakefield JK, Zhuo Y, Bellis SL. Woodard-Grice AV, et al. J Biol Chem. 2008 Sep 26;283(39):26364-73. doi: 10.1074/jbc.M800836200. Epub 2008 Jul 23. J Biol Chem. 2008. PMID: 18650447 Free PMC article. - Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility.
Seales EC, Jurado GA, Brunson BA, Wakefield JK, Frost AR, Bellis SL. Seales EC, et al. Cancer Res. 2005 Jun 1;65(11):4645-52. doi: 10.1158/0008-5472.CAN-04-3117. Cancer Res. 2005. PMID: 15930282 - Cleavage of ST6Gal I by radiation-induced BACE1 inhibits golgi-anchored ST6Gal I-mediated sialylation of integrin β1 and migration in colon cancer cells.
Lee M, Park JJ, Ko YG, Lee YS. Lee M, et al. Radiat Oncol. 2012 Mar 27;7:47. doi: 10.1186/1748-717X-7-47. Radiat Oncol. 2012. PMID: 22449099 Free PMC article. - Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation.
Isaji T, Gu J. Isaji T, et al. Biochim Biophys Acta Gen Subj. 2024 Jun;1868(6):130617. doi: 10.1016/j.bbagen.2024.130617. Epub 2024 Apr 16. Biochim Biophys Acta Gen Subj. 2024. PMID: 38614280 Review.
Cited by
- Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics.
Ankenbauer KE, Rao TC, Mattheyses AL, Bellis SL. Ankenbauer KE, et al. bioRxiv [Preprint]. 2023 Jun 4:2023.06.03.543566. doi: 10.1101/2023.06.03.543566. bioRxiv. 2023. PMID: 37398202 Free PMC article. Updated. Preprint. - The human ion channel TRPM2 modulates migration and invasion in neuroblastoma through regulation of integrin expression.
Bao L, Festa F, Hirschler-Laszkiewicz I, Keefer K, Wang HG, Cheung JY, Miller BA. Bao L, et al. Sci Rep. 2022 Nov 29;12(1):20544. doi: 10.1038/s41598-022-25138-w. Sci Rep. 2022. PMID: 36446940 Free PMC article. - ST6Gal1: Oncogenic signaling pathways and targets.
Gc S, Bellis SL, Hjelmeland AB. Gc S, et al. Front Mol Biosci. 2022 Aug 29;9:962908. doi: 10.3389/fmolb.2022.962908. eCollection 2022. Front Mol Biosci. 2022. PMID: 36106023 Free PMC article. Review. - An Integrated Mass Spectrometry-Based Glycomics-Driven Glycoproteomics Analytical Platform to Functionally Characterize Glycosylation Inhibitors.
Alvarez MRS, Zhou Q, Grijaldo SJB, Lebrilla CB, Nacario RC, Heralde FM 3rd, Rabajante JF, Completo GC. Alvarez MRS, et al. Molecules. 2022 Jun 14;27(12):3834. doi: 10.3390/molecules27123834. Molecules. 2022. PMID: 35744954 Free PMC article. - Finding New Ways How to Control BACE1.
Nahálková J. Nahálková J. J Membr Biol. 2022 Jun;255(2-3):293-318. doi: 10.1007/s00232-022-00225-1. Epub 2022 Mar 19. J Membr Biol. 2022. PMID: 35305135
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous