Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2 - PubMed (original) (raw)

Synthesis and biological activities of aryl-ether-, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of the high-affinity glutamate transporter EAAT-2

Alexander Greenfield et al. Bioorg Med Chem Lett. 2005.

Abstract

Excitatory amino acid transporters (EAATs) play a pivotal role in maintaining glutamate homeostasis in the mammalian central nervous system, with the EAAT-2 subtype thought to be responsible for the bulk of the glutamate uptake in forebrain regions. A complete elucidation of the functional role of EAAT-2 has been hampered by the lack of potent and selective pharmacological tools. In this study, we describe the synthesis and biological activities of novel aryl-ether, biaryl-, and fluorene-aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT-2. Compound (16) represents one of the most potent (IC50=85+/-5 nM) and selective inhibitors of EAAT-2 identified to date.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources