Translation initiation: structures, mechanisms and evolution - PubMed (original) (raw)
Review
. 2004 Aug-Nov;37(3-4):197-284.
doi: 10.1017/S0033583505004026.
Affiliations
- PMID: 16194295
- DOI: 10.1017/S0033583505004026
Review
Translation initiation: structures, mechanisms and evolution
Assen Marintchev et al. Q Rev Biophys. 2004 Aug-Nov.
Abstract
Translation, the process of mRNA-encoded protein synthesis, requires a complex apparatus, composed of the ribosome, tRNAs and additional protein factors, including aminoacyl tRNA synthetases. The ribosome provides the platform for proper assembly of mRNA, tRNAs and protein factors and carries the peptidyl-transferase activity. It consists of small and large subunits. The ribosomes are ribonucleoprotein particles with a ribosomal RNA core, to which multiple ribosomal proteins are bound. The sequence and structure of ribosomal RNAs, tRNAs, some of the ribosomal proteins and some of the additional protein factors are conserved in all kingdoms, underlying the common origin of the translation apparatus. Translation can be subdivided into several steps: initiation, elongation, termination and recycling. Of these, initiation is the most complex and the most divergent among the different kingdoms of life. A great amount of new structural, biochemical and genetic information on translation initiation has been accumulated in recent years, which led to the realization that initiation also shows a great degree of conservation throughout evolution. In this review, we summarize the available structural and functional data on translation initiation in the context of evolution, drawing parallels between eubacteria, archaea, and eukaryotes. We will start with an overview of the ribosome structure and of translation in general, placing emphasis on factors and processes with relevance to initiation. The major steps in initiation and the factors involved will be described, followed by discussion of the structure and function of the individual initiation factors throughout evolution. We will conclude with a summary of the available information on the kinetic and thermodynamic aspects of translation initiation.
Similar articles
- Start Codon Recognition in Eukaryotic and Archaeal Translation Initiation: A Common Structural Core.
Schmitt E, Coureux PD, Monestier A, Dubiez E, Mechulam Y. Schmitt E, et al. Int J Mol Sci. 2019 Feb 21;20(4):939. doi: 10.3390/ijms20040939. Int J Mol Sci. 2019. PMID: 30795538 Free PMC article. Review. - Structure-function insights into prokaryotic and eukaryotic translation initiation.
Myasnikov AG, Simonetti A, Marzi S, Klaholz BP. Myasnikov AG, et al. Curr Opin Struct Biol. 2009 Jun;19(3):300-9. doi: 10.1016/j.sbi.2009.04.010. Epub 2009 Jun 1. Curr Opin Struct Biol. 2009. PMID: 19493673 Review. - Engaging the ribosome: universal IFs of translation.
Roll-Mecak A, Shin BS, Dever TE, Burley SK. Roll-Mecak A, et al. Trends Biochem Sci. 2001 Dec;26(12):705-9. doi: 10.1016/s0968-0004(01)02024-2. Trends Biochem Sci. 2001. PMID: 11738593 - Structural basis for messenger RNA movement on the ribosome.
Yusupova G, Jenner L, Rees B, Moras D, Yusupov M. Yusupova G, et al. Nature. 2006 Nov 16;444(7117):391-4. doi: 10.1038/nature05281. Epub 2006 Oct 18. Nature. 2006. PMID: 17051149 - Evolution and the universality of the mechanism of initiation of protein synthesis.
Nakamoto T. Nakamoto T. Gene. 2009 Mar 1;432(1-2):1-6. doi: 10.1016/j.gene.2008.11.001. Epub 2008 Nov 8. Gene. 2009. PMID: 19056476 Review.
Cited by
- Human eIF5 and eIF1A Compete for Binding to eIF5B.
Lin KY, Nag N, Pestova TV, Marintchev A. Lin KY, et al. Biochemistry. 2018 Oct 9;57(40):5910-5920. doi: 10.1021/acs.biochem.8b00839. Epub 2018 Sep 26. Biochemistry. 2018. PMID: 30211544 Free PMC article. - Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions.
Schütz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H, Altmann M, Baumann U. Schütz P, et al. Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9564-9. doi: 10.1073/pnas.0800418105. Epub 2008 Jul 7. Proc Natl Acad Sci U S A. 2008. PMID: 18606994 Free PMC article. - Archaeal aIF2B interacts with eukaryotic translation initiation factors eIF2alpha and eIF2Balpha: Implications for aIF2B function and eIF2B regulation.
Dev K, Santangelo TJ, Rothenburg S, Neculai D, Dey M, Sicheri F, Dever TE, Reeve JN, Hinnebusch AG. Dev K, et al. J Mol Biol. 2009 Sep 25;392(3):701-22. doi: 10.1016/j.jmb.2009.07.030. Epub 2009 Jul 17. J Mol Biol. 2009. PMID: 19616556 Free PMC article. - Dynamic Interaction of Eukaryotic Initiation Factor 4G1 (eIF4G1) with eIF4E and eIF1 Underlies Scanning-Dependent and -Independent Translation.
Haimov O, Sehrawat U, Tamarkin-Ben Harush A, Bahat A, Uzonyi A, Will A, Hiraishi H, Asano K, Dikstein R. Haimov O, et al. Mol Cell Biol. 2018 Aug 28;38(18):e00139-18. doi: 10.1128/MCB.00139-18. Print 2018 Sep 15. Mol Cell Biol. 2018. PMID: 29987188 Free PMC article. - Legionella pneumophila-mediated host posttranslational modifications.
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Yang Y, et al. J Mol Cell Biol. 2023 Nov 27;15(5):mjad032. doi: 10.1093/jmcb/mjad032. J Mol Cell Biol. 2023. PMID: 37156500 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
- U19CA87427/CA/NCI NIH HHS/United States
- CA 68262/CA/NCI NIH HHS/United States
- GM47467/GM/NIGMS NIH HHS/United States
- P01 GM047467/GM/NIGMS NIH HHS/United States
- RR-00995/RR/NCRR NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources