The dual klepsydra model of internal time representation and time reproduction - PubMed (original) (raw)
. 2006 Apr 21;239(4):482-93.
doi: 10.1016/j.jtbi.2005.08.024. Epub 2005 Oct 3.
Affiliations
- PMID: 16202427
- DOI: 10.1016/j.jtbi.2005.08.024
The dual klepsydra model of internal time representation and time reproduction
Jirí Wackermann et al. J Theor Biol. 2006.
Abstract
We present a model of the internal representation and reproduction of temporal durations, the 'dual klepsydra' model (DKM). Unlike most contemporary models operating on a 'pacemaker-counter' scheme, the DKM does not assume an oscillatory process as the internal time-base. It is based on irreversible, dissipative processes in inflow/outflow systems (leaky klepsydrae), whose states are continuously compared; if their states are equal, durations are subjectively perceived as equal. Model-based predictions fit experimental time reproduction data with good accuracy, and show qualitative features not accounted for by other models. The deterministic model is characterized by two parameters, kappa (outflow rate coefficient) and eta (ratio of inflow rates). A stochastic version of the model (SDKM) assumes randomly fluctuating inflows, involves two more parameters, and accounts for intra-individual variance of reproduced durations. Analysis of the SDKM leads to non-trivial problems in the stochastic theory, briefly sketched here. Methods of parameter estimation for both deterministic and stochastic versions are given. Applying the DKM to the subjective experience of time passage, we show how subjective measure of elapsed time is constituted. Finally, essential features of the model and its possible neurophysiological interpretation are discussed.
Similar articles
- A stochastic model of oscillatory blood testosterone levels.
Heuett WJ, Qian H. Heuett WJ, et al. Bull Math Biol. 2006 Aug;68(6):1383-99. doi: 10.1007/s11538-006-9098-4. Bull Math Biol. 2006. PMID: 16823661 - Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model.
Hellweger FL, Kianirad E. Hellweger FL, et al. J Theor Biol. 2007 Dec 7;249(3):554-65. doi: 10.1016/j.jtbi.2007.08.020. Epub 2007 Aug 25. J Theor Biol. 2007. PMID: 17900626 - Parameter estimation in a stochastic model of the tubuloglomerular feedback mechanism in a rat nephron.
Ditlevsen S, Yip KP, Holstein-Rathlou NH. Ditlevsen S, et al. Math Biosci. 2005 Mar;194(1):49-69. doi: 10.1016/j.mbs.2004.12.007. Math Biosci. 2005. PMID: 15836864 - Temporal cognition and the phenomenology of time: a multiplicative function for apparent duration.
Glicksohn J. Glicksohn J. Conscious Cogn. 2001 Mar;10(1):1-25. doi: 10.1006/ccog.2000.0468. Conscious Cogn. 2001. PMID: 11273623 Review.
Cited by
- Event as the central construal of psychological time in humans.
Stojić S, Nadasdy Z. Stojić S, et al. Front Psychol. 2024 Sep 18;15:1402903. doi: 10.3389/fpsyg.2024.1402903. eCollection 2024. Front Psychol. 2024. PMID: 39359968 Free PMC article. Review. - Spaceflight alters reaction time and duration judgment of astronauts.
Kuldavletova O, Navarro Morales DC, Quarck G, Denise P, Clément G. Kuldavletova O, et al. Front Physiol. 2023 Mar 17;14:1141078. doi: 10.3389/fphys.2023.1141078. eCollection 2023. Front Physiol. 2023. PMID: 37007995 Free PMC article. - Negative errors in time reproduction tasks.
Riemer M, Wolbers T. Riemer M, et al. Psychol Res. 2020 Feb;84(1):168-176. doi: 10.1007/s00426-018-0994-7. Epub 2018 Feb 19. Psychol Res. 2020. PMID: 29460144 - Temporal Regularity of the Environment Drives Time Perception.
Rhodes D, Di Luca M. Rhodes D, et al. PLoS One. 2016 Jul 21;11(7):e0159842. doi: 10.1371/journal.pone.0159842. eCollection 2016. PLoS One. 2016. PMID: 27441686 Free PMC article. - Systematic Underreproduction of Time Is Independent of Judgment Certainty.
Riemer M, Rhodes D, Wolbers T. Riemer M, et al. Neural Plast. 2016;2016:6890674. doi: 10.1155/2016/6890674. Epub 2016 Jan 10. Neural Plast. 2016. PMID: 26881127 Free PMC article.