Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle - PubMed (original) (raw)
. 2006 Jan 20;281(3):1547-54.
doi: 10.1074/jbc.M505024200. Epub 2005 Oct 10.
Affiliations
- PMID: 16216882
- DOI: 10.1074/jbc.M505024200
Free article
Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle
Vyacheslav M Shkryl et al. J Biol Chem. 2006.
Free article
Abstract
The role of mitochondrial Ca2+ transport in regulating intracellular Ca2+ signaling and mitochondrial enzymes involved in energy metabolism is widely recognized in many tissues. However, the ability of skeletal muscle mitochondria to sequester Ca2+ released from the sarcoplasmic reticulum (SR) during the muscle contraction-relaxation cycle is still disputed. To assess the functional cross-talk of Ca2+ between SR and mitochondria, we examined the mutual relationship connecting cytosolic and mitochondrial Ca2+ dynamics in permeabilized skeletal muscle fibers. Cytosolic and mitochondrial Ca2+ transients were recorded with digital photometry and confocal microscopy using fura-2 and mag-rhod-2, respectively. In the presence of 0.5 mM slow Ca2+ buffer (EGTA (ethylene glycolbis(2-aminoethylether)-N,N,N',N'-tetraacetic acid)), application of caffeine induced a synchronized increase in both cytosolic and mitochondrial [Ca2+]. 5 mM fast Ca2+ buffer (BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)) nearly eliminated caffeine-induced increases in [Ca2+]c but only partially decreased the amplitude of mitochondrial Ca2+ transients. Confocal imaging revealed that in EGTA, almost all mitochondria picked up Ca2+ released from the SR by caffeine, whereas only about 70% of mitochondria did so in BAPTA. Taken together, these results indicated that a subpopulation of mitochondria is in close functional and presumably structural proximity to the SR, giving rise to subcellular microdomains in which Ca2+ has preferential access to the juxtaposed organelles.
Similar articles
- Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.
Yi J, Ma C, Li Y, Weisleder N, Ríos E, Ma J, Zhou J. Yi J, et al. J Biol Chem. 2011 Sep 16;286(37):32436-43. doi: 10.1074/jbc.M110.217711. Epub 2011 Jul 27. J Biol Chem. 2011. PMID: 21795684 Free PMC article. - Role of Mitofusin-2 in mitochondrial localization and calcium uptake in skeletal muscle.
Ainbinder A, Boncompagni S, Protasi F, Dirksen RT. Ainbinder A, et al. Cell Calcium. 2015 Jan;57(1):14-24. doi: 10.1016/j.ceca.2014.11.002. Epub 2014 Nov 15. Cell Calcium. 2015. PMID: 25477138 Free PMC article. - Effects of creatine phosphate on Ca2+ regulation by the sarcoplasmic reticulum in mechanically skinned rat skeletal muscle fibres.
Duke AM, Steele DS. Duke AM, et al. J Physiol. 1999 Jun 1;517 ( Pt 2)(Pt 2):447-58. doi: 10.1111/j.1469-7793.1999.0447t.x. J Physiol. 1999. PMID: 10332094 Free PMC article. - Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle.
Martonosi AN. Martonosi AN. Physiol Rev. 1984 Oct;64(4):1240-320. doi: 10.1152/physrev.1984.64.4.1240. Physiol Rev. 1984. PMID: 6093162 Review. - A study of the mechanisms of excitation-contraction coupling in frog skeletal muscle based on measurements of [Ca2+] transients inside the sarcoplasmic reticulum.
Olivera JF, Pizarro G. Olivera JF, et al. J Muscle Res Cell Motil. 2018 Apr;39(1-2):41-60. doi: 10.1007/s10974-018-9497-9. Epub 2018 Aug 24. J Muscle Res Cell Motil. 2018. PMID: 30143958 Review.
Cited by
- Physical coupling supports the local Ca2+ transfer between sarcoplasmic reticulum subdomains and the mitochondria in heart muscle.
García-Pérez C, Hajnóczky G, Csordás G. García-Pérez C, et al. J Biol Chem. 2008 Nov 21;283(47):32771-80. doi: 10.1074/jbc.M803385200. Epub 2008 Sep 12. J Biol Chem. 2008. PMID: 18790739 Free PMC article. - Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling.
Yi J, Ma C, Li Y, Weisleder N, Ríos E, Ma J, Zhou J. Yi J, et al. J Biol Chem. 2011 Sep 16;286(37):32436-43. doi: 10.1074/jbc.M110.217711. Epub 2011 Jul 27. J Biol Chem. 2011. PMID: 21795684 Free PMC article. - Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle.
Rossi AE, Boncompagni S, Wei L, Protasi F, Dirksen RT. Rossi AE, et al. Am J Physiol Cell Physiol. 2011 Nov;301(5):C1128-39. doi: 10.1152/ajpcell.00194.2011. Epub 2011 Aug 17. Am J Physiol Cell Physiol. 2011. PMID: 21849670 Free PMC article. - The use of CalciumOrange-5N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers.
Bolaños P, Guillen A, Rojas H, Boncompagni S, Caputo C. Bolaños P, et al. Pflugers Arch. 2008 Jan;455(4):721-31. doi: 10.1007/s00424-007-0312-5. Epub 2007 Aug 18. Pflugers Arch. 2008. PMID: 17705046 - The excitation-contraction coupling mechanism in skeletal muscle.
Calderón JC, Bolaños P, Caputo C. Calderón JC, et al. Biophys Rev. 2014 Mar;6(1):133-160. doi: 10.1007/s12551-013-0135-x. Epub 2014 Jan 24. Biophys Rev. 2014. PMID: 28509964 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous