Differentiation of L- and D-S-nitrosothiol recognition sites in vivo - PubMed (original) (raw)

Differentiation of L- and D-S-nitrosothiol recognition sites in vivo

Stephen J Lewis et al. J Cardiovasc Pharmacol. 2005 Nov.

Abstract

The main aim of this study was to determine the effects of the lipophobic electron acceptor, nitroblue tetrazolium (NBT), on the vasodilator responses elicited by femoral vein injections of L- and D-S-nitrosocysteine (L- and D-SNC), L- and D-S-nitroso-beta,beta-dimethylcysteine (L- and D-SNPEN) and the nitric oxide (NO) donor, MAHMA NONOate, in pentobarbital-anesthetized rats. L- and D-SNC, L- and D-SNPEN, and MAHMA NONOate elicited dose-dependent falls in mean arterial blood pressure (MAP), and hindquarter (HQR), renal (RR), and mesenteric (MR) vascular resistances. The L-SNC- and L-SNPEN-induced depressor and vasodilator responses were markedly attenuated after injection of NBT. The D-SNC- and D-SNPEN-induced falls in mean arterial pressure, hindquarter, and mesenteric vascular resistances were also reduced after injection of nitroblue tetrazolium whereas the falls in renal resistances were not affected. However, nitroblue tetrazolium inhibited the L-SNC and L-SNPEN responses much more profoundly than the D-SNC and D-SNPEN responses in each vascular bed. In contrast, the MAHMA NONOate-induced responses were not attenuated by nitroblue tetrazolium. This study demonstrates that nitroblue tetrazolium attenuates L- and D-SNC-and L- and D-SNPEN- mediated but not NO-mediated vasodilation. The lack of effects of NBT on the NO responses suggests that NBT does not interfere with the intracellular mechanisms by which NO relaxes vascular smooth muscle. The more pronounced effects of NBT on the vasodilator effects of L-SNC and L-SNPEN than D-SNC and D-SNPEN suggests that these stereoisomers differentially interact with stereoselective S-nitrosothiol recognition sites in the vasculature and that these sites (or their signaling elements) contain thiol residues that may be susceptible to occupation and/or oxidation (ie, disulfide-bond formation) by nitroblue tetrazolium.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources