Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade - PubMed (original) (raw)
Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade
Yijiang Shi et al. Mol Cancer Ther. 2005 Oct.
Abstract
Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin and CCI-779, have shown preclinical potential as therapy for multiple myeloma. By inhibiting expression of cell cycle proteins, these agents induce G1 arrest. However, by also inhibiting an mTOR-dependent serine phosphorylation of insulin receptor substrate-1 (IRS-1), they may enhance insulin-like growth factor-I (IGF-I) signaling and downstream phosphatidylinositol 3-kinase (PI3K)/AKT activation. This may be a particular problem in multiple myeloma where IGF-I-induced activation of AKT is an important antiapoptotic cascade. We, therefore, studied AKT activation in multiple myeloma cells treated with mTOR inhibitors. Rapamycin enhanced basal AKT activity, AKT phosphorylation, and PI3K activity in multiple myeloma cells and prolonged activation of AKT induced by exogenous IGF-I. CCI-779, used in a xenograft model, also resulted in multiple myeloma cell AKT activation in vivo. Blockade of IGF-I receptor function prevented rapamycin's activation of AKT. Furthermore, rapamycin prevented serine phosphorylation of IRS-1, enhanced IRS-1 association with IGF-I receptors, and prevented IRS-1 degradation. Although similarly blocking IRS-1 degradation, proteasome inhibitors did not activate AKT. Thus, mTOR inhibitors activate PI3-K/AKT in multiple myeloma cells; activation depends on basal IGF-R signaling; and enhanced IRS-1/IGF-I receptor interactions secondary to inhibited IRS-1 serine phosphorylation may play a role in activation of the cascade. In cotreatment experiments, rapamycin inhibited myeloma cell apoptosis induced by PS-341. These results provide a caveat for future use of mTOR inhibitors in myeloma patients if they are to be combined with apoptosis-inducing agents.
Similar articles
- Rapamycin promotes vascular smooth muscle cell differentiation through insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt2 feedback signaling.
Martin KA, Merenick BL, Ding M, Fetalvero KM, Rzucidlo EM, Kozul CD, Brown DJ, Chiu HY, Shyu M, Drapeau BL, Wagner RJ, Powell RJ. Martin KA, et al. J Biol Chem. 2007 Dec 7;282(49):36112-20. doi: 10.1074/jbc.M703914200. Epub 2007 Sep 30. J Biol Chem. 2007. PMID: 17908691 - mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt.
O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, Baselga J, Rosen N. O'Reilly KE, et al. Cancer Res. 2006 Feb 1;66(3):1500-8. doi: 10.1158/0008-5472.CAN-05-2925. Cancer Res. 2006. PMID: 16452206 Free PMC article. - Inhibition of mammalian target of rapamycin induces phosphatidylinositol 3-kinase-dependent and Mnk-mediated eukaryotic translation initiation factor 4E phosphorylation.
Wang X, Yue P, Chan CB, Ye K, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Fu H, Khuri FR, Sun SY. Wang X, et al. Mol Cell Biol. 2007 Nov;27(21):7405-13. doi: 10.1128/MCB.00760-07. Epub 2007 Aug 27. Mol Cell Biol. 2007. PMID: 17724079 Free PMC article. - New inhibitors of the PI3K-Akt-mTOR pathway: insights into mTOR signaling from a new generation of Tor Kinase Domain Inhibitors (TORKinibs).
Feldman ME, Shokat KM. Feldman ME, et al. Curr Top Microbiol Immunol. 2010;347:241-62. doi: 10.1007/82_2010_64. Curr Top Microbiol Immunol. 2010. PMID: 20549474 Review. - New targets for therapy in breast cancer: mammalian target of rapamycin (mTOR) antagonists.
Carraway H, Hidalgo M. Carraway H, et al. Breast Cancer Res. 2004;6(5):219-24. doi: 10.1186/bcr927. Epub 2004 Aug 12. Breast Cancer Res. 2004. PMID: 15318929 Free PMC article. Review.
Cited by
- Negative feedback and adaptive resistance to the targeted therapy of cancer.
Chandarlapaty S. Chandarlapaty S. Cancer Discov. 2012 Apr;2(4):311-9. doi: 10.1158/2159-8290.CD-12-0018. Epub 2012 Mar 22. Cancer Discov. 2012. PMID: 22576208 Free PMC article. Review. - Current perspectives on interethnic variability in multiple myeloma: Single cell technology, population pharmacogenetics and molecular signal transduction.
Gandhi M, Bakhai V, Trivedi J, Mishra A, De Andrés F, LLerena A, Sharma R, Nair S. Gandhi M, et al. Transl Oncol. 2022 Nov;25:101532. doi: 10.1016/j.tranon.2022.101532. Epub 2022 Sep 11. Transl Oncol. 2022. PMID: 36103755 Free PMC article. - Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells.
Zub KA, Sousa MM, Sarno A, Sharma A, Demirovic A, Rao S, Young C, Aas PA, Ericsson I, Sundan A, Jensen ON, Slupphaug G. Zub KA, et al. PLoS One. 2015 Mar 13;10(3):e0119857. doi: 10.1371/journal.pone.0119857. eCollection 2015. PLoS One. 2015. PMID: 25769101 Free PMC article. - Activity of everolimus (RAD001) in relapsed and/or refractory multiple myeloma: a phase I study.
Günther A, Baumann P, Burger R, Kellner C, Klapper W, Schmidmaier R, Gramatzki M. Günther A, et al. Haematologica. 2015 Apr;100(4):541-7. doi: 10.3324/haematol.2014.116269. Epub 2015 Feb 14. Haematologica. 2015. PMID: 25682600 Free PMC article. Clinical Trial. - Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells.
Grabinski N, Ewald F, Hofmann BT, Staufer K, Schumacher U, Nashan B, Jücker M. Grabinski N, et al. Mol Cancer. 2012 Nov 20;11:85. doi: 10.1186/1476-4598-11-85. Mol Cancer. 2012. PMID: 23167739 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous