A general method to modify BACs to generate large recombinant DNA fragments - PubMed (original) (raw)
A general method to modify BACs to generate large recombinant DNA fragments
Wei Shen et al. Mol Biotechnol. 2005 Nov.
Abstract
Bacterial artificial chromosome (BAC) has the capacity to clone DNA fragments in excess of 300 kb. It also has the considerable advantages of stable propagation and ease of purification. These features make BAC suitable in genetic research, such as library construction, transgenic mice production, and gene targeting constructs. Homologous recombination in Escherichia coli, a process named recombineering, has made the modification of BACs easy and reliable. We report here a modified recombineering method that can efficiently mediate the fusion of large DNA fragments from two or more different BACs. With the introduction of kanamycin-resistant gene and proposed rare-cutting restriction endonuclease (RCRE) sites into two BACs, a 82.6-kb DNA fragment containing the inverted human alpha-globin genes (theta, alpha1, alpha2, and zeta) from BAC191K2 and the locus control region (LCR) of human beta-globin gene locus (from the BAC186D7) was reconstructed. This approach for combining different BAC DNA fragments should facilitate many kinds of genomic experiments.
Similar articles
- A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA.
Lee EC, Yu D, Martinez de Velasco J, Tessarollo L, Swing DA, Court DL, Jenkins NA, Copeland NG. Lee EC, et al. Genomics. 2001 Apr 1;73(1):56-65. doi: 10.1006/geno.2000.6451. Genomics. 2001. PMID: 11352566 - General method for the modification of different BAC types and the rapid generation of BAC transgenic mice.
Sparwasser T, Gong S, Li JY, Eberl G. Sparwasser T, et al. Genesis. 2004 Jan;38(1):39-50. doi: 10.1002/gene.10249. Genesis. 2004. PMID: 14755803 - Insertion of modifications in the beta-globin locus using GET recombination with single-stranded oligonucleotides and denatured PCR fragments.
Jamsai D, Orford M, Fucharoen S, Williamson R, Ioannou PA. Jamsai D, et al. Mol Biotechnol. 2003 Jan;23(1):29-36. doi: 10.1385/MB:23:1:29. Mol Biotechnol. 2003. PMID: 12611267 - Bacterial artificial chromosome mutagenesis using recombineering.
Narayanan K, Chen Q. Narayanan K, et al. J Biomed Biotechnol. 2011;2011:971296. doi: 10.1155/2011/971296. Epub 2010 Dec 9. J Biomed Biotechnol. 2011. PMID: 21197472 Free PMC article. Review. - Recombineering: a powerful new tool for mouse functional genomics.
Copeland NG, Jenkins NA, Court DL. Copeland NG, et al. Nat Rev Genet. 2001 Oct;2(10):769-79. doi: 10.1038/35093556. Nat Rev Genet. 2001. PMID: 11584293 Review.
Cited by
- Increasing cloning possibilities using artificial zinc finger nucleases.
Zeevi V, Tovkach A, Tzfira T. Zeevi V, et al. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12785-90. doi: 10.1073/pnas.0803618105. Epub 2008 Aug 25. Proc Natl Acad Sci U S A. 2008. PMID: 18725642 Free PMC article. - Visualization of IL-22-expressing Lymphocytes Using Reporter Mice.
Shen W, Li W, Hixon JA, Andrews C, Durum SK. Shen W, et al. J Vis Exp. 2017 Jan 25;(119):54710. doi: 10.3791/54710. J Vis Exp. 2017. PMID: 28190033 Free PMC article.
References
- Nat Biotechnol. 2003 Apr;21(4):443-7 - PubMed
- Nat Genet. 1999 Aug;22(4):327-35 - PubMed
- Nature. 2003 Oct 30;425(6961):917-25 - PubMed
- Genome Res. 1996 Nov;6(11):1123-30 - PubMed
- EMBO Rep. 2000 Sep;1(3):239-43 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources