Focal adhesions as mechanosensors: the two-spring model - PubMed (original) (raw)
Focal adhesions as mechanosensors: the two-spring model
Ulrich S Schwarz et al. Biosystems. 2006 Feb-Mar.
Abstract
Adhesion-dependent cells actively sense the mechanical properties of their environment through mechanotransductory processes at focal adhesions, which are integrin-based contacts connecting the extracellular matrix to the cytoskeleton. Here we present first steps towards a quantitative understanding of focal adhesions as mechanosensors. It has been shown experimentally that high levels of force are related to growth of and signaling at focal adhesions. In particular, activation of the small GTPase Rho through focal adhesions leads to the formation of stress fibers. Here we discuss one way in which force might regulate the internal state of focal adhesions, namely by modulating the internal rupture dynamics of focal adhesions. A simple two-spring model shows that the stiffer the environment, the more efficient cellular force is built up at focal adhesions by molecular motors interacting with the actin filaments.
Similar articles
- Model of integrin-mediated cell adhesion strengthening.
Gallant ND, García AJ. Gallant ND, et al. J Biomech. 2007;40(6):1301-9. doi: 10.1016/j.jbiomech.2006.05.018. Epub 2006 Jul 7. J Biomech. 2007. PMID: 16828104 - Assembly and mechanosensory function of focal adhesions: experiments and models.
Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B, Khochbin S, Alexandrova AY, Verkhovsky AB, Shemesh T, Kozlov MM. Bershadsky AD, et al. Eur J Cell Biol. 2006 Apr;85(3-4):165-73. doi: 10.1016/j.ejcb.2005.11.001. Epub 2005 Dec 19. Eur J Cell Biol. 2006. PMID: 16360240 Review. - Force-induced adsorption and anisotropic growth of focal adhesions.
Besser A, Safran SA. Besser A, et al. Biophys J. 2006 May 15;90(10):3469-84. doi: 10.1529/biophysj.105.074377. Epub 2006 Mar 2. Biophys J. 2006. PMID: 16513789 Free PMC article. - Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions.
Ciobanasu C, Faivre B, Le Clainche C. Ciobanasu C, et al. Eur J Cell Biol. 2013 Oct-Nov;92(10-11):339-48. doi: 10.1016/j.ejcb.2013.10.009. Epub 2013 Nov 4. Eur J Cell Biol. 2013. PMID: 24252517 Review. - The mechanochemistry of cytoskeletal force generation.
Maraldi M, Garikipati K. Maraldi M, et al. Biomech Model Mechanobiol. 2015 Jan;14(1):59-72. doi: 10.1007/s10237-014-0588-2. Epub 2014 May 6. Biomech Model Mechanobiol. 2015. PMID: 24796414
Cited by
- Intercellular Adhesion Stiffness Moderates Cell Decoupling as a Function of Substrate Stiffness.
Vargas DA, Heck T, Smeets B, Ramon H, Parameswaran H, Van Oosterwyck H. Vargas DA, et al. Biophys J. 2020 Jul 21;119(2):243-257. doi: 10.1016/j.bpj.2020.05.036. Epub 2020 Jun 12. Biophys J. 2020. PMID: 32621867 Free PMC article. - The direction of stretch-induced cell and stress fiber orientation depends on collagen matrix stress.
Tondon A, Kaunas R. Tondon A, et al. PLoS One. 2014 Feb 24;9(2):e89592. doi: 10.1371/journal.pone.0089592. eCollection 2014. PLoS One. 2014. PMID: 24586898 Free PMC article. - Three-Dimensional Characterization of Mechanical Interactions between Endothelial Cells and Extracellular Matrix during Angiogenic Sprouting.
Du Y, Herath SC, Wang QG, Wang DA, Asada HH, Chen PC. Du Y, et al. Sci Rep. 2016 Feb 23;6:21362. doi: 10.1038/srep21362. Sci Rep. 2016. PMID: 26903154 Free PMC article. - The bioenergetics of integrin-based adhesion, from single molecule dynamics to stability of macromolecular complexes.
MacKay L, Khadra A. MacKay L, et al. Comput Struct Biotechnol J. 2020 Feb 13;18:393-416. doi: 10.1016/j.csbj.2020.02.003. eCollection 2020. Comput Struct Biotechnol J. 2020. PMID: 32128069 Free PMC article. Review. - How cells feel: stochastic model for a molecular mechanosensor.
Escudé M, Rigozzi MK, Terentjev EM. Escudé M, et al. Biophys J. 2014 Jan 7;106(1):124-33. doi: 10.1016/j.bpj.2013.10.042. Biophys J. 2014. PMID: 24411244 Free PMC article.