Efficiency and power in genetic association studies - PubMed (original) (raw)
. 2005 Nov;37(11):1217-23.
doi: 10.1038/ng1669. Epub 2005 Oct 23.
Affiliations
- PMID: 16244653
- DOI: 10.1038/ng1669
Efficiency and power in genetic association studies
Paul I W de Bakker et al. Nat Genet. 2005 Nov.
Abstract
We investigated selection and analysis of tag SNPs for genome-wide association studies by specifically examining the relationship between investment in genotyping and statistical power. Do pairwise or multimarker methods maximize efficiency and power? To what extent is power compromised when tags are selected from an incomplete resource such as HapMap? We addressed these questions using genotype data from the HapMap ENCODE project, association studies simulated under a realistic disease model, and empirical correction for multiple hypothesis testing. We demonstrate a haplotype-based tagging method that uniformly outperforms single-marker tests and methods for prioritization that markedly increase tagging efficiency. Examining all observed haplotypes for association, rather than just those that are proxies for known SNPs, increases power to detect rare causal alleles, at the cost of reduced power to detect common causal alleles. Power is robust to the completeness of the reference panel from which tags are selected. These findings have implications for prioritizing tag SNPs and interpreting association studies.
Comment in
- Power tools for human genetics.
Kruglyak L. Kruglyak L. Nat Genet. 2005 Dec;37(12):1299-300. doi: 10.1038/ng1205-1299. Nat Genet. 2005. PMID: 16314858 No abstract available.
Similar articles
- Tag SNP selection for association studies.
Stram DO. Stram DO. Genet Epidemiol. 2004 Dec;27(4):365-74. doi: 10.1002/gepi.20028. Genet Epidemiol. 2004. PMID: 15372618 Review. - Genome-wide selection of tag SNPs using multiple-marker correlation.
Hao K. Hao K. Bioinformatics. 2007 Dec 1;23(23):3178-84. doi: 10.1093/bioinformatics/btm496. Epub 2007 Nov 15. Bioinformatics. 2007. PMID: 18006555 - Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation.
Moskvina V, O'Donovan MC. Moskvina V, et al. Hum Hered. 2007;64(1):63-73. doi: 10.1159/000101424. Epub 2007 Apr 27. Hum Hered. 2007. PMID: 17483598 - On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles.
Morris RW, Kaplan NL. Morris RW, et al. Genet Epidemiol. 2002 Oct;23(3):221-33. doi: 10.1002/gepi.10200. Genet Epidemiol. 2002. PMID: 12384975 - [Analysis and application of SNP and haplotype in the human genome].
Li J, Pan YC, Li YX, Shi TL. Li J, et al. Yi Chuan Xue Bao. 2005 Aug;32(8):879-89. Yi Chuan Xue Bao. 2005. PMID: 16231744 Review. Chinese.
Cited by
- Clinical review: Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed.
Hsu YH, Kiel DP. Hsu YH, et al. J Clin Endocrinol Metab. 2012 Oct;97(10):E1958-77. doi: 10.1210/jc.2012-1890. Epub 2012 Sep 10. J Clin Endocrinol Metab. 2012. PMID: 22965941 Free PMC article. Review. - Variants in Adjacent Oxytocin/Vasopressin Gene Region and Associations with ASD Diagnosis and Other Autism Related Endophenotypes.
Francis SM, Kistner-Griffin E, Yan Z, Guter S, Cook EH, Jacob S. Francis SM, et al. Front Neurosci. 2016 May 12;10:195. doi: 10.3389/fnins.2016.00195. eCollection 2016. Front Neurosci. 2016. PMID: 27242401 Free PMC article. - Genetic variants in platelet factor 4 modulate inflammatory and platelet activation biomarkers.
Bhatnagar P, Lu X, Evans MK, Laveist TA, Zonderman AB, Carter DL, Arking DE, Fletcher CA. Bhatnagar P, et al. Circ Cardiovasc Genet. 2012 Aug 1;5(4):412-21. doi: 10.1161/CIRCGENETICS.111.961813. Epub 2012 Jul 4. Circ Cardiovasc Genet. 2012. PMID: 22763266 Free PMC article. - Comprehensive analysis of LAMC1 genetic variants in advanced pelvic organ prolapse.
Wu JM, Visco AG, Grass EA, Craig DM, Fulton RG, Haynes C, Amundsen CL, Shah SH. Wu JM, et al. Am J Obstet Gynecol. 2012 May;206(5):447.e1-6. doi: 10.1016/j.ajog.2012.01.033. Epub 2012 Jan 31. Am J Obstet Gynecol. 2012. PMID: 22342894 Free PMC article. - Common genetic variation in eight genes of the GH/IGF1 axis does not contribute to adult height variation.
Lettre G, Butler JL, Ardlie KG, Hirschhorn JN. Lettre G, et al. Hum Genet. 2007 Sep;122(2):129-39. doi: 10.1007/s00439-007-0385-4. Epub 2007 Jun 2. Hum Genet. 2007. PMID: 17546465
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials