Computation in the olfactory system - PubMed (original) (raw)
Review
doi: 10.1093/chemse/bji072. Epub 2005 Nov 2.
Affiliations
- PMID: 16267161
- DOI: 10.1093/chemse/bji072
Review
Computation in the olfactory system
Thomas A Cleland et al. Chem Senses. 2005 Nov.
Abstract
Computational models are increasingly essential to systems neuroscience. Models serve as proofs of concept, tests of sufficiency, and as quantitative embodiments of working hypotheses and are important tools for understanding and interpreting complex data sets. In the olfactory system, models have played a particularly prominent role in framing contemporary theories and presenting novel hypotheses, a role that will only grow as the complexity and intricacy of experimental data continue to increase. This review will attempt to provide a comprehensive, functional overview of computational ideas in olfaction and outline a computational framework for olfactory processing based on the insights provided by these diverse models and their supporting data.
Similar articles
- Perireceptor and receptor events in vertebrate olfaction.
Getchell TV, Margolis FL, Getchell ML. Getchell TV, et al. Prog Neurobiol. 1984;23(4):317-45. doi: 10.1016/0301-0082(84)90008-x. Prog Neurobiol. 1984. PMID: 6398455 Review. - A phenomenological model of the perceived intensity of single odorants.
Mankin RW, Mayer MS. Mankin RW, et al. J Theor Biol. 1983 Jan 7;100(1):123-38. doi: 10.1016/0022-5193(83)90097-8. J Theor Biol. 1983. PMID: 6834857 - Odor encoding as an active, dynamical process: experiments, computation, and theory.
Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HD. Laurent G, et al. Annu Rev Neurosci. 2001;24:263-97. doi: 10.1146/annurev.neuro.24.1.263. Annu Rev Neurosci. 2001. PMID: 11283312 Review. - Generative Biophysical Modeling of Dynamical Networks in the Olfactory System.
Li G, Cleland TA. Li G, et al. Methods Mol Biol. 2018;1820:265-288. doi: 10.1007/978-1-4939-8609-5_20. Methods Mol Biol. 2018. PMID: 29884952 Free PMC article. - Computation of molecular information in mammalian olfactory systems.
Mori K, Nagao H, Sasaki YF. Mori K, et al. Network. 1998 Nov;9(4):R79-102. Network. 1998. PMID: 10221572 Review.
Cited by
- Reciprocal processes of sensory perception and social bonding: an integrated social-sensory framework of social behavior.
Prior NH, Bentz EJ, Ophir AG. Prior NH, et al. Genes Brain Behav. 2022 Mar;21(3):e12781. doi: 10.1111/gbb.12781. Epub 2021 Dec 14. Genes Brain Behav. 2022. PMID: 34905293 Free PMC article. Review. - Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period.
Qiu Q, Wu Y, Ma L, Xu W, Hills M Jr, Ramalingam V, Yu CR. Qiu Q, et al. Elife. 2021 Mar 26;10:e60546. doi: 10.7554/eLife.60546. Elife. 2021. PMID: 33769278 Free PMC article. - Olfactory bulb gamma oscillations are enhanced with task demands.
Beshel J, Kopell N, Kay LM. Beshel J, et al. J Neurosci. 2007 Aug 1;27(31):8358-65. doi: 10.1523/JNEUROSCI.1199-07.2007. J Neurosci. 2007. PMID: 17670982 Free PMC article. - The orexinergic system influences conditioned odor aversion learning in the rat: a theory on the processes and hypothesis on the circuit involved.
Ferry B. Ferry B. Front Behav Neurosci. 2014 May 6;8:164. doi: 10.3389/fnbeh.2014.00164. eCollection 2014. Front Behav Neurosci. 2014. PMID: 24834041 Free PMC article. - Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task.
Devore S, Manella LC, Linster C. Devore S, et al. Front Behav Neurosci. 2012 Sep 6;6:59. doi: 10.3389/fnbeh.2012.00059. eCollection 2012. Front Behav Neurosci. 2012. PMID: 22973212 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources