Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes - PubMed (original) (raw)
Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes
Hassan Rahmoune et al. Diabetes. 2005 Dec.
Abstract
The bulk of glucose that is filtered by the renal glomerulus is reabsorbed by the glucose transporters of the proximal convoluted tubular epithelium. However, it has been difficult to investigate this in diseases such as type 2 diabetes because of the inability to isolate primary renal cells from patients without a renal biopsy. We report here a method for the immunomagnetic isolation and novel primary culture of human exfoliated proximal tubular epithelial cells (HEPTECs) from fresh urine. The primary isolates are highly enriched and differentiated and express characteristic proximal tubular phenotypic markers. They continue to express the proximal tubular markers CD13/aminopeptidase-N, sodium glucose cotransporter (SGLT) 2, and alkaline phosphatase through up to six subsequent subcultures in a similar way to human proximal cells isolated from renal biopsies. In a hyperglycemic environment, HEPTECs isolated from patients with type 2 diabetes expressed significantly more SGLT2 and the facilitative glucose transporter GLUT2 than cells from healthy individuals. We also demonstrated a markedly increased renal glucose uptake in HEPTECs isolated from patients with type 2 diabetes compared with healthy control subjects. Our findings indicate for the first time in a human cellular model that increased renal glucose transporter expression and activity is associated with type 2 diabetes.
Similar articles
- Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.
Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Chichger H, et al. Exp Physiol. 2016 Jun 1;101(6):731-42. doi: 10.1113/EP085670. Epub 2016 May 10. Exp Physiol. 2016. PMID: 27164183 - Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis.
Maeda S, Matsui T, Takeuchi M, Yamagishi S. Maeda S, et al. Diabetes Metab Res Rev. 2013 Jul;29(5):406-12. doi: 10.1002/dmrr.2407. Diabetes Metab Res Rev. 2013. PMID: 23508966 - Comparison of the transcellular transport of FDG and D-glucose by the kidney epithelial cell line, LLC-PK1.
Kobayashi M, Shikano N, Nishii R, Kiyono Y, Araki H, Nishi K, Oh M, Okudaira H, Ogura M, Yoshimoto M, Okazawa H, Fujibayashi Y, Kawai K. Kobayashi M, et al. Nucl Med Commun. 2010 Feb;31(2):141-6. doi: 10.1097/MNM.0b013e328333bcf5. Nucl Med Commun. 2010. PMID: 19949354 - Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells.
Lee YJ, Lee YJ, Han HJ. Lee YJ, et al. Kidney Int Suppl. 2007 Aug;(106):S27-35. doi: 10.1038/sj.ki.5002383. Kidney Int Suppl. 2007. PMID: 17653207 Review. - [Contribution of the kidney to glucose homeostasis].
Segura J, Ruilope LM. Segura J, et al. Med Clin (Barc). 2013 Sep;141 Suppl 2:26-30. doi: 10.1016/S0025-7753(13)70060-5. Med Clin (Barc). 2013. PMID: 24444521 Review. Spanish.
Cited by
- Uninephrectomy and sodium-glucose cotransporter 2 inhibitor administration delay the onset of hyperglycemia.
Ishizaki YS, Kikuchi M, Kaikita K, Fujimoto S. Ishizaki YS, et al. Physiol Rep. 2024 Nov;12(21):e70121. doi: 10.14814/phy2.70121. Physiol Rep. 2024. PMID: 39523534 Free PMC article. - Effects of canagliflozin on kidney oxygenation evaluated using blood oxygenation level-dependent MRI in patients with type 2 diabetes.
Mori K, Inoue T, Machiba Y, Uedono H, Nakatani S, Ishikawa M, Taniuchi S, Katayama Y, Yamamoto A, Kobayashi N, Kozawa E, Shimono T, Miki Y, Okada H, Emoto M. Mori K, et al. Front Endocrinol (Lausanne). 2024 Aug 30;15:1451671. doi: 10.3389/fendo.2024.1451671. eCollection 2024. Front Endocrinol (Lausanne). 2024. PMID: 39280006 Free PMC article. - Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors and Cardiovascular Outcomes: A Review of Literature.
Mani S, Balasubramanian A, Veluswami K, Rao S, Aggarwal S. Mani S, et al. Cureus. 2024 Jul 4;16(7):e63796. doi: 10.7759/cureus.63796. eCollection 2024 Jul. Cureus. 2024. PMID: 39099905 Free PMC article. Review. - Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states.
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Kanbay M, et al. Clin Kidney J. 2024 Jun 25;17(7):sfae195. doi: 10.1093/ckj/sfae195. eCollection 2024 Jul. Clin Kidney J. 2024. PMID: 39050867 Free PMC article. Review. - Ketoacidosis and SGLT2 Inhibitors: A Narrative Review.
Morace C, Lorello G, Bellone F, Quartarone C, Ruggeri D, Giandalia A, Mandraffino G, Minutoli L, Squadrito G, Russo GT, Marini HR. Morace C, et al. Metabolites. 2024 May 6;14(5):264. doi: 10.3390/metabo14050264. Metabolites. 2024. PMID: 38786741 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous