The hexosamine signaling pathway: deciphering the "O-GlcNAc code" - PubMed (original) (raw)
Review
. 2005 Nov 29;2005(312):re13.
doi: 10.1126/stke.3122005re13.
Affiliations
- PMID: 16317114
- DOI: 10.1126/stke.3122005re13
Review
The hexosamine signaling pathway: deciphering the "O-GlcNAc code"
Dona C Love et al. Sci STKE. 2005.
Abstract
A dynamic cycle of addition and removal of O-linked N-acetylglucosamine (O-GlcNAc) at serine and threonine residues is emerging as a key regulator of nuclear and cytoplasmic protein activity. Like phosphorylation, protein O-GlcNAcylation dramatically alters the posttranslational fate and function of target proteins. Indeed, O-GlcNAcylation may compete with phosphorylation for certain Ser/Thr target sites. Like kinases and phosphatases, the enzymes of O-GlcNAc metabolism are highly compartmentalized and regulated. Yet, O-GlcNAc addition is subject to an additional and unique level of metabolic control. O-GlcNAc transfer is the terminal step in a "hexosamine signaling pathway" (HSP). In the HSP, levels of uridine 5'-diphosphate (UDP)-GlcNAc respond to nutrient excess to activate O-GlcNAcylation. Removal of O-GlcNAc may also be under similar metabolic regulation. Differentially targeted isoforms of the enzymes of O-GlcNAc metabolism allow the participation of O-GlcNAc in diverse intracellular functions. O-GlcNAc addition and removal are key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in animals and the gibberellin signaling pathway in plants. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. This review will focus on current approaches to deciphering the "O-GlcNAc code" in order to elucidate how O-GlcNAc participates in its diverse functions. This ongoing effort requires analysis of the enzymes of O-GlcNAc metabolism, their many targets, and how the O-GlcNAc modification may be regulated.
Similar articles
- Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer.
Forsythe ME, Love DC, Lazarus BD, Kim EJ, Prinz WA, Ashwell G, Krause MW, Hanover JA. Forsythe ME, et al. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):11952-7. doi: 10.1073/pnas.0601931103. Epub 2006 Aug 1. Proc Natl Acad Sci U S A. 2006. PMID: 16882729 Free PMC article. - The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine.
Hanover JA, Krause MW, Love DC. Hanover JA, et al. Biochim Biophys Acta. 2010 Feb;1800(2):80-95. doi: 10.1016/j.bbagen.2009.07.017. Epub 2009 Jul 30. Biochim Biophys Acta. 2010. PMID: 19647043 Free PMC article. Review. - Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration.
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Akan I, et al. J Neurochem. 2018 Jan;144(1):7-34. doi: 10.1111/jnc.14242. Epub 2017 Nov 20. J Neurochem. 2018. PMID: 29049853 Free PMC article. Review. - O-linked beta-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress.
Butkinaree C, Park K, Hart GW. Butkinaree C, et al. Biochim Biophys Acta. 2010 Feb;1800(2):96-106. doi: 10.1016/j.bbagen.2009.07.018. Epub 2009 Aug 6. Biochim Biophys Acta. 2010. PMID: 19647786 Free PMC article. Review. - O-GlcNAcylation, a sweet link to the pathology of diseases.
Nie H, Yi W. Nie H, et al. J Zhejiang Univ Sci B. 2019 May;20(5):437-448. doi: 10.1631/jzus.B1900150. J Zhejiang Univ Sci B. 2019. PMID: 31090269 Free PMC article. Review.
Cited by
- Hexosamine biosynthesis impairs insulin action via a cholesterolgenic response.
Penque BA, Hoggatt AM, Herring BP, Elmendorf JS. Penque BA, et al. Mol Endocrinol. 2013 Mar;27(3):536-47. doi: 10.1210/me.2012-1213. Epub 2013 Jan 11. Mol Endocrinol. 2013. PMID: 23315940 Free PMC article. - Targeting _O_-GlcNAcylation to overcome resistance to anti-cancer therapies.
Very N, El Yazidi-Belkoura I. Very N, et al. Front Oncol. 2022 Aug 17;12:960312. doi: 10.3389/fonc.2022.960312. eCollection 2022. Front Oncol. 2022. PMID: 36059648 Free PMC article. Review. - Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis.
Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. Keembiyehetty C, et al. J Biol Chem. 2015 Mar 13;290(11):7097-113. doi: 10.1074/jbc.M114.617779. Epub 2015 Jan 16. J Biol Chem. 2015. PMID: 25596529 Free PMC article. - O-GlcNAc cycling: implications for neurodegenerative disorders.
Lazarus BD, Love DC, Hanover JA. Lazarus BD, et al. Int J Biochem Cell Biol. 2009 Nov;41(11):2134-46. doi: 10.1016/j.biocel.2009.03.008. Epub 2009 Mar 27. Int J Biochem Cell Biol. 2009. PMID: 19782947 Free PMC article. Review. - O-GlcNAc cycling: emerging roles in development and epigenetics.
Love DC, Krause MW, Hanover JA. Love DC, et al. Semin Cell Dev Biol. 2010 Aug;21(6):646-54. doi: 10.1016/j.semcdb.2010.05.001. Epub 2010 May 19. Semin Cell Dev Biol. 2010. PMID: 20488252 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources