Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells - PubMed (original) (raw)
. 2006 Jan 20;494(3):415-34.
doi: 10.1002/cne.20798.
Affiliations
- PMID: 16320258
- DOI: 10.1002/cne.20798
Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells
Alfredo Quiñones-Hinojosa et al. J Comp Neurol. 2006.
Abstract
The lateral wall of the lateral ventricle in the human brain contains neural stem cells throughout adult life. We conducted a cytoarchitectural and ultrastructural study in complete postmortem brains (n = 7) and in postmortem (n = 42) and intraoperative tissue (n = 43) samples of the lateral walls of the human lateral ventricles. With varying thickness and cell densities, four layers were observed throughout the lateral ventricular wall: a monolayer of ependymal cells (Layer I), a hypocellular gap (Layer II), a ribbon of cells (Layer III) composed of astrocytes, and a transitional zone (Layer IV) into the brain parenchyma. Unlike rodents and nonhuman primates, adult human glial fibrillary acidic protein (GFAP)+ subventricular zone (SVZ) astrocytes are separated from the ependyma by the hypocellular gap. Some astrocytes as well as a few GFAP-cells in Layer II in the SVZ of the anterior horn and the body of the lateral ventricle appear to proliferate based on proliferating cell nuclear antigen (PCNA) and Ki67 staining. However, compared to rodents, the adult human SVZ appears to be devoid of chain migration or large numbers of newly formed young neurons. It was only in the anterior SVZ that we found examples of elongated Tuj1+ cells with migratory morphology. We provide ultrastructural criteria to identify the different cells types in the human SVZ including three distinct types of astrocytes and a group of displaced ependymal cells between Layers II and III. Ultrastructural analysis of this layer revealed a remarkable network of astrocytic and ependymal processes. This work provides a basic description of the organization of the adult human SVZ.
Copyright 2005 Wiley-Liss, Inc
Similar articles
- Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream.
Gil-Perotin S, Duran-Moreno M, Belzunegui S, Luquin MR, Garcia-Verdugo JM. Gil-Perotin S, et al. J Comp Neurol. 2009 Jun 10;514(5):533-54. doi: 10.1002/cne.22026. J Comp Neurol. 2009. PMID: 19350672 - The human brain subventricular zone: stem cells in this niche and its organization.
Quiñones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. Quiñones-Hinojosa A, et al. Neurosurg Clin N Am. 2007 Jan;18(1):15-20, vii. doi: 10.1016/j.nec.2006.10.013. Neurosurg Clin N Am. 2007. PMID: 17244550 Review. - Cellular organization of the central canal ependymal zone, a niche of latent neural stem cells in the adult mammalian spinal cord.
Hamilton LK, Truong MK, Bednarczyk MR, Aumont A, Fernandes KJ. Hamilton LK, et al. Neuroscience. 2009 Dec 15;164(3):1044-56. doi: 10.1016/j.neuroscience.2009.09.006. Epub 2009 Sep 9. Neuroscience. 2009. PMID: 19747531 - The aging neurogenic subventricular zone.
Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC. Luo J, et al. Aging Cell. 2006 Apr;5(2):139-52. doi: 10.1111/j.1474-9726.2006.00197.x. Aging Cell. 2006. PMID: 16626393 - The heterogeneity of adult neural stem cells and the emerging complexity of their niche.
Alvarez-Buylla A, Kohwi M, Nguyen TM, Merkle FT. Alvarez-Buylla A, et al. Cold Spring Harb Symp Quant Biol. 2008;73:357-65. doi: 10.1101/sqb.2008.73.019. Epub 2008 Nov 6. Cold Spring Harb Symp Quant Biol. 2008. PMID: 19022766 Review.
Cited by
- High-Grade Thalamic Glioma: Case Report with Literature Review.
Toader C, Radoi MP, Dumitru A, Glavan LA, Covache-Busuioc RA, Popa AA, Costin HP, Corlatescu AD, Ciurea AV. Toader C, et al. Medicina (Kaunas). 2024 Oct 11;60(10):1667. doi: 10.3390/medicina60101667. Medicina (Kaunas). 2024. PMID: 39459454 Free PMC article. Review. - Ventricular-subventricular zone stem cell niche adaptations in a mouse model of post-infectious hydrocephalus.
Herman J, Rittenhouse N, Mandino F, Majid M, Wang Y, Mezger A, Kump A, Kadian S, Lake EMR, Verardi PH, Conover JC. Herman J, et al. Front Neurosci. 2024 Jul 31;18:1429829. doi: 10.3389/fnins.2024.1429829. eCollection 2024. Front Neurosci. 2024. PMID: 39145299 Free PMC article. - Cell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone.
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Norton ES, et al. Sci Adv. 2024 Aug 9;10(32):eadn1607. doi: 10.1126/sciadv.adn1607. Epub 2024 Aug 7. Sci Adv. 2024. PMID: 39110807 Free PMC article. - Caudate functional networks influence brain structural changes with aging.
Basaia S, Zavarella M, Rugarli G, Sferruzza G, Cividini C, Canu E, Cacciaguerra L, Bacigaluppi M, Martino G, Filippi M, Agosta F. Basaia S, et al. Brain Commun. 2024 Apr 9;6(2):fcae116. doi: 10.1093/braincomms/fcae116. eCollection 2024. Brain Commun. 2024. PMID: 38665962 Free PMC article. - Exploring the Intricacies of Neurogenic Niches: Unraveling the Anatomy and Neural Microenvironments.
Sánchez-Gomar I, Geribaldi-Doldán N, Santos-Rosendo C, Sanguino-Caneva C, Carrillo-Chapman C, Fiorillo-Moreno O, Villareal Camacho JL, Quiroz EN, Verástegui C. Sánchez-Gomar I, et al. Biomolecules. 2024 Mar 12;14(3):335. doi: 10.3390/biom14030335. Biomolecules. 2024. PMID: 38540755 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous