Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice - PubMed (original) (raw)
Comparative Study
. 2006 Jan 1;15(1):113-28.
doi: 10.1093/hmg/ddi433. Epub 2005 Dec 1.
Affiliations
- PMID: 16321990
- DOI: 10.1093/hmg/ddi433
Comparative Study
Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice
Katsuhiko Togawa et al. Hum Mol Genet. 2006.
Abstract
Most quantitative trait loci (QTL) studies have focused on detecting the genetic effects of individual QTLs. This study thoroughly dissected the genetic components of type 2 diabetic mice, including a search for epistatic interactions and multi-locus additive effects that result in variation in diabetes-related phenotypes. F2 population was generated from BKS.Cg-Leprdb+/+m and DBA/2 intercross and separated into six subpopulations by sex and the db-dependent diabetes severity. Single-locus and pairwise genome scans first identified the QTLs in these F2 subpopulations, and next covariate-dependent scans confirmed their sex-, db- and sex-by-db-specific effects in the combined populations. Single-locus genome scans detected four QTLs (QBIS1, QBIS2, QBIS3 and QBIS4) that presented their genetic effects beyond sex, but most QTLs showed their effects specifically in limited conditions. This highly conditional feature of the QTLs was accentuated in the pairwise analysis. The pairwise genome scans uncovered a total of 27 significantly interacting or additively acting pairs of loci, showing a better fit to explain the total phenotypic variation of the traits. These significant pairs affected the traits under constantly varying combinations of loci in a time series or in both sexes. In addition, pairwise analysis indicated the appropriate genetic background in constructing congenic strains to obtain the maximum power in the replication of phenotypes. Our study showed high degree of complexity in the genetics of type 2 diabetes in mice, and it suggested that a comprehensive understanding of the multi-locus effects was essential to disentangle the complex genetics of diabetes and obesity in humans.
Similar articles
- Identification of candidate genes in the type 2 diabetes modifier locus using expression QTL.
Yaguchi H, Togawa K, Moritani M, Itakura M. Yaguchi H, et al. Genomics. 2005 May;85(5):591-9. doi: 10.1016/j.ygeno.2005.01.006. Genomics. 2005. PMID: 15820311 - Coincidence of loci for glucosuria and obesity in type 2 diabetes-prone KK-Ay mice.
Suto J. Suto J. Med Sci Monit. 2008 Feb;14(2):CR65-74. Med Sci Monit. 2008. PMID: 18227763 - Genetic modifiers interact with Cpe(fat) to affect body weight, adiposity, and hyperglycemia.
Collin GB, Maddatu TP, Sen S, Naggert JK. Collin GB, et al. Physiol Genomics. 2005 Jul 14;22(2):182-90. doi: 10.1152/physiolgenomics.00208.2003. Epub 2005 May 3. Physiol Genomics. 2005. PMID: 15870393 - QTL-based evidence for the role of epistasis in evolution.
Malmberg RL, Mauricio R. Malmberg RL, et al. Genet Res. 2005 Oct;86(2):89-95. doi: 10.1017/S0016672305007780. Genet Res. 2005. PMID: 16356282 Review.
Cited by
- Genome-wide association mapping of quantitative traits in outbred mice.
Zhang W, Korstanje R, Thaisz J, Staedtler F, Harttman N, Xu L, Feng M, Yanas L, Yang H, Valdar W, Churchill GA, Dipetrillo K. Zhang W, et al. G3 (Bethesda). 2012 Feb;2(2):167-74. doi: 10.1534/g3.111.001792. Epub 2012 Feb 1. G3 (Bethesda). 2012. PMID: 22384395 Free PMC article. - Diabetic modifier QTLs in F(2) intercrosses carrying homozygous transgene of TGF-beta.
Suzuki T, Moritani M, Yoshino M, Kagami M, Iwasaki S, Nishimura K, Akamatsu M, Kobori M, Matsushime H, Kotoh M, Furuichi K, Itakura M. Suzuki T, et al. Mamm Genome. 2008 Jan;19(1):15-25. doi: 10.1007/s00335-007-9080-y. Epub 2007 Dec 27. Mamm Genome. 2008. PMID: 18160996 - E96V Mutation in the Kdelr3 Gene Is Associated with Type 2 Diabetes Susceptibility in Obese NZO Mice.
Altenhofen D, Khuong JM, Kuhn T, Lebek S, Görigk S, Kaiser K, Binsch C, Griess K, Knebel B, Belgardt BF, Cames S, Eickelschulte S, Stermann T, Rasche A, Herwig R, Weiss J, Vogel H, Schürmann A, Chadt A, Al-Hasani H. Altenhofen D, et al. Int J Mol Sci. 2023 Jan 3;24(1):845. doi: 10.3390/ijms24010845. Int J Mol Sci. 2023. PMID: 36614300 Free PMC article. - Identification of Novel Potential Type 2 Diabetes Genes Mediating β-Cell Loss and Hyperglycemia Using Positional Cloning.
Aga H, Hallahan N, Gottmann P, Jaehnert M, Osburg S, Schulze G, Kamitz A, Arends D, Brockmann G, Schallschmidt T, Lebek S, Chadt A, Al-Hasani H, Joost HG, Schürmann A, Vogel H. Aga H, et al. Front Genet. 2020 Sep 30;11:567191. doi: 10.3389/fgene.2020.567191. eCollection 2020. Front Genet. 2020. PMID: 33133152 Free PMC article. - Panx3 links body mass index and tumorigenesis in a genetically heterogeneous mouse model of carcinogen-induced cancer.
Halliwill KD, Quigley DA, Kang HC, Del Rosario R, Ginzinger D, Balmain A. Halliwill KD, et al. Genome Med. 2016 Aug 9;8(1):83. doi: 10.1186/s13073-016-0334-8. Genome Med. 2016. PMID: 27506198 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous