Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction - PubMed (original) (raw)
. 2005 Dec 20;44(50):16684-94.
doi: 10.1021/bi051908a.
Affiliations
- PMID: 16342958
- DOI: 10.1021/bi051908a
Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction
Xianlin Han et al. Biochemistry. 2005.
Abstract
Diabetic cardiomyopathy is characterized by excessive utilization of fatty acid substrate, diminished glucose transport, and mitochondrial dysfunction. However, the chemical mechanisms linking altered substrate utilization to mitochondrial dysfunction are unknown. Herein, we use shotgun lipidomics and multidimensional mass spectrometry to identify dramatic decreases in the critical mitochondrial inner membrane lipid, cardiolipin, in diabetic murine myocardium (from 7.2 +/- 0.3 nmol/mg of protein in control hearts to 3.1 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Moreover, the direct metabolic precursor of cardiolipin, phosphatidylglycerol, was also substantially depleted (2.5 +/- 0.2 nmol/mg of protein in control hearts vs 1.3 +/- 0.1 nmol/mg of protein in diabetic myocardium; p < 0.001, n = 7). Similarly, glycerol 3-phosphate, necessary for the penultimate step in phosphatidylglycerol production, decreased by 58% in diabetic myocardium (from 4.9 +/- 0.9 to 2.2 +/- 0.3 nmol/mg of protein; n = 4). Since Barth's syndrome (a disorder of cardiolipin metabolism) induces mitochondrial dysfunction and cardiomyopathy, and since decreases in cardiolipin content precipitate mitochondrial dysfunction, these results provide a unifying hypothesis linking altered substrate utilization and metabolic flux in diabetic myocardium with altered lipid metabolism, cardiolipin depletion, mitochondrial dysfunction, and resultant hemodynamic compromise.
Similar articles
- Cardiolipin remodeling in diabetic heart.
He Q, Han X. He Q, et al. Chem Phys Lipids. 2014 Apr;179:75-81. doi: 10.1016/j.chemphyslip.2013.10.007. Epub 2013 Nov 1. Chem Phys Lipids. 2014. PMID: 24189589 - Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study.
Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW. Han X, et al. Biochemistry. 2007 May 29;46(21):6417-28. doi: 10.1021/bi7004015. Epub 2007 May 8. Biochemistry. 2007. PMID: 17487985 Free PMC article. - Cardiolipin: biosynthesis, remodeling and trafficking in the heart and mammalian cells (Review).
Hatch GM. Hatch GM. Int J Mol Med. 1998 Jan;1(1):33-41. doi: 10.3892/ijmm.1.1.33. Int J Mol Med. 1998. PMID: 9852196 Review. - Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease.
Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Paradies G, et al. Cell Calcium. 2009 Jun;45(6):643-50. doi: 10.1016/j.ceca.2009.03.012. Epub 2009 Apr 15. Cell Calcium. 2009. PMID: 19368971 Review.
Cited by
- AMP-activated protein kinase alpha2 deficiency affects cardiac cardiolipin homeostasis and mitochondrial function.
Athéa Y, Viollet B, Mateo P, Rousseau D, Novotova M, Garnier A, Vaulont S, Wilding JR, Grynberg A, Veksler V, Hoerter J, Ventura-Clapier R. Athéa Y, et al. Diabetes. 2007 Mar;56(3):786-94. doi: 10.2337/db06-0187. Diabetes. 2007. PMID: 17327449 Free PMC article. - TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes.
Miklas JW, Clark E, Levy S, Detraux D, Leonard A, Beussman K, Showalter MR, Smith AT, Hofsteen P, Yang X, Macadangdang J, Manninen T, Raftery D, Madan A, Suomalainen A, Kim DH, Murry CE, Fiehn O, Sniadecki NJ, Wang Y, Ruohola-Baker H. Miklas JW, et al. Nat Commun. 2019 Oct 11;10(1):4671. doi: 10.1038/s41467-019-12482-1. Nat Commun. 2019. PMID: 31604922 Free PMC article. - Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes.
Pennington ER, Fix A, Sullivan EM, Brown DA, Kennedy A, Shaikh SR. Pennington ER, et al. Biochim Biophys Acta Biomembr. 2017 Feb;1859(2):257-267. doi: 10.1016/j.bbamem.2016.11.012. Epub 2016 Nov 24. Biochim Biophys Acta Biomembr. 2017. PMID: 27889304 Free PMC article. - Comparing phospholipid profiles of mitochondria and whole tissue: Higher PUFA content in mitochondria is driven by increased phosphatidylcholine unsaturation.
Kuschner CE, Choi J, Yin T, Shinozaki K, Becker LB, Lampe JW, Kim J. Kuschner CE, et al. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Sep 1;1093-1094:147-157. doi: 10.1016/j.jchromb.2018.07.006. Epub 2018 Jul 10. J Chromatogr B Analyt Technol Biomed Life Sci. 2018. PMID: 30029201 Free PMC article. - Profile of cardiac lipid metabolism in STZ-induced diabetic mice.
Li W, Yao M, Wang R, Shi Y, Hou L, Hou Z, Lian K, Zhang N, Wang Y, Li W, Wang W, Jiang L. Li W, et al. Lipids Health Dis. 2018 Oct 9;17(1):231. doi: 10.1186/s12944-018-0872-8. Lipids Health Dis. 2018. PMID: 30301464 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources