Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents - PubMed (original) (raw)
Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents
D P Wiesenborn et al. Appl Environ Microbiol. 1988 Nov.
Abstract
Thiolase (acetyl-coenzyme A [CoA] acetyltransferase, E.C. 2.3.1.19) from Clostridium acetobutylicum ATCC 824 has been purified 70-fold to homogeneity. Unlike the thiolase in Clostridium pasteurianum, this thiolase has high relative activity throughout the physiological range of internal pH of 5.5 to 7.0, indicating that change in internal pH during acid production is not an important factor in the regulation of this thiolase. In the condensation direction, the thiolase is inhibited by micromolar levels of CoA, and this may be an important factor in modulating the net condensation of acetyl-CoA to acetoacetyl-CoA. Other cofactors and metabolites that were tested and shown to be inhibitors are ATP and butyryl-CoA. The native enzyme consists of four 44,000-molecular-weight subunits. The kinetic binding mechanism is ping-pong. The K(m) value for acetyl-CoA is 0.27 mM at 30 degrees C and pH 7.4. The K(m) values for sulfhydryl-CoA and acetoacetyl-CoA are, respectively, 0.0048 and 0.032 mM at 30 degrees C and pH 8.0. The active site apparently contains a sulfhydryl group, but unlike other thiolases, this thiolase is relatively stable in the presence of 5,5'-dithiobis(2-nitrobenzoic acid). Studies of thiolase specific activity under various types of continuous fermentations show that regulation of this enzyme at both the genetic and enzyme levels is important.
Similar articles
- The kinetic mechanism and properties of the cytoplasmic acetoacetyl-coenzyme A thiolase from rat liver.
Middleton B. Middleton B. Biochem J. 1974 Apr;139(1):109-21. doi: 10.1042/bj1390109. Biochem J. 1974. PMID: 4156910 Free PMC article. - Thiolase engineering for enhanced butanol production in Clostridium acetobutylicum.
Mann MS, Lütke-Eversloh T. Mann MS, et al. Biotechnol Bioeng. 2013 Mar;110(3):887-97. doi: 10.1002/bit.24758. Epub 2012 Nov 1. Biotechnol Bioeng. 2013. PMID: 23096577 - Understanding the function of bacterial and eukaryotic thiolases II by integrating evolutionary and functional approaches.
Fox AR, Soto G, Mozzicafreddo M, Garcia AN, Cuccioloni M, Angeletti M, Salerno JC, Ayub ND. Fox AR, et al. Gene. 2014 Jan 1;533(1):5-10. doi: 10.1016/j.gene.2013.09.096. Epub 2013 Oct 11. Gene. 2014. PMID: 24120621 Review. - Thiolase: A Versatile Biocatalyst Employing Coenzyme A-Thioester Chemistry for Making and Breaking C-C Bonds.
Harijan RK, Dalwani S, Kiema TR, Venkatesan R, Wierenga RK. Harijan RK, et al. Annu Rev Biochem. 2023 Jun 20;92:351-384. doi: 10.1146/annurev-biochem-052521-033746. Epub 2023 Apr 17. Annu Rev Biochem. 2023. PMID: 37068769 Review.
Cited by
- Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824.
Harris LM, Welker NE, Papoutsakis ET. Harris LM, et al. J Bacteriol. 2002 Jul;184(13):3586-97. doi: 10.1128/JB.184.13.3586-3597.2002. J Bacteriol. 2002. PMID: 12057953 Free PMC article. - Reconstruction of xylose utilization pathway and regulons in Firmicutes.
Gu Y, Ding Y, Ren C, Sun Z, Rodionov DA, Zhang W, Yang S, Yang C, Jiang W. Gu Y, et al. BMC Genomics. 2010 Apr 21;11:255. doi: 10.1186/1471-2164-11-255. BMC Genomics. 2010. PMID: 20406496 Free PMC article. - Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli.
Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Shen CR, et al. Appl Environ Microbiol. 2011 May;77(9):2905-15. doi: 10.1128/AEM.03034-10. Epub 2011 Mar 11. Appl Environ Microbiol. 2011. PMID: 21398484 Free PMC article. - Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol.
Vasconcelos I, Girbal L, Soucaille P. Vasconcelos I, et al. J Bacteriol. 1994 Mar;176(5):1443-50. doi: 10.1128/jb.176.5.1443-1450.1994. J Bacteriol. 1994. PMID: 8113186 Free PMC article. - Development of Clostridium saccharoperbutylacetonicum as a Whole Cell Biocatalyst for Production of Chirally Pure (R)-1,3-Butanediol.
Grosse-Honebrink A, Little GT, Bean Z, Heldt D, Cornock RHM, Winzer K, Minton NP, Green E, Zhang Y. Grosse-Honebrink A, et al. Front Bioeng Biotechnol. 2021 May 13;9:659895. doi: 10.3389/fbioe.2021.659895. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 34055760 Free PMC article.
References
- Arch Biochem Biophys. 1987 Apr;254(1):272-81 - PubMed
- J Biol Chem. 1951 Nov;193(1):265-75 - PubMed
- Biochem J. 1964 May;91(2):222-33 - PubMed
- Nature. 1970 Aug 15;227(5259):680-5 - PubMed
- Anal Biochem. 1984 Sep;141(2):344-7 - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases