Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer - PubMed (original) (raw)
. 2006 Feb 3;340(1):183-9.
doi: 10.1016/j.bbrc.2005.11.164. Epub 2005 Dec 9.
Affiliations
- PMID: 16356478
- DOI: 10.1016/j.bbrc.2005.11.164
Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer
Satoshi Kishigami et al. Biochem Biophys Res Commun. 2006.
Abstract
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently, we elucidated by using round spermatids that, after nuclear transfer, treatment of zygotes with trichostatin A (TSA), an inhibitor of histone deacetylase, can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami, N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama. E. Mizutani, T. Wakayama, Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids, Dev. Biol. (2005) in press]. Here, we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells, spleen cells, neural stem cells, and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further, we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus, our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.
Similar articles
- High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos.
Li J, Svarcova O, Villemoes K, Kragh PM, Schmidt M, Bøgh IB, Zhang Y, Du Y, Lin L, Purup S, Xue Q, Bolund L, Yang H, Maddox-Hyttel P, Vajta G. Li J, et al. Theriogenology. 2008 Sep 15;70(5):800-8. doi: 10.1016/j.theriogenology.2008.05.046. Epub 2008 Jun 24. Theriogenology. 2008. PMID: 18573521 - Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos.
Wee G, Shim JJ, Koo DB, Chae JI, Lee KK, Han YM. Wee G, et al. Reproduction. 2007 Dec;134(6):781-7. doi: 10.1530/REP-07-0338. Reproduction. 2007. PMID: 18042635 - Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos.
Cervera RP, Martí-Gutiérrez N, Escorihuela E, Moreno R, Stojkovic M. Cervera RP, et al. Theriogenology. 2009 Nov;72(8):1097-110. doi: 10.1016/j.theriogenology.2009.06.030. Epub 2009 Sep 17. Theriogenology. 2009. PMID: 19765811 - Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.
Eilertsen KJ, Power RA, Harkins LL, Misica P. Eilertsen KJ, et al. Anim Reprod Sci. 2007 Mar;98(1-2):129-46. doi: 10.1016/j.anireprosci.2006.10.019. Epub 2006 Oct 21. Anim Reprod Sci. 2007. PMID: 17166676 Review. - Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor.
Wakayama S, Wakayama T. Wakayama S, et al. Int J Dev Biol. 2010;54(11-12):1641-8. doi: 10.1387/ijdb.103205sw. Int J Dev Biol. 2010. PMID: 21404185 Review.
Cited by
- Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming.
Mao J, Zhao MT, Whitworth KM, Spate LD, Walters EM, O'Gorman C, Lee K, Samuel MS, Murphy CN, Wells K, Rivera RM, Prather RS. Mao J, et al. Cell Reprogram. 2015 Feb;17(1):28-40. doi: 10.1089/cell.2014.0075. Epub 2014 Dec 30. Cell Reprogram. 2015. PMID: 25548976 Free PMC article. - Valproic acid improves the in vitro development competence of bovine somatic cell nuclear transfer embryos.
Xu W, Wang Y, Li Y, Wang L, Xiong X, Su J, Zhang Y. Xu W, et al. Cell Reprogram. 2012 Apr;14(2):138-45. doi: 10.1089/cell.2011.0084. Epub 2012 Feb 28. Cell Reprogram. 2012. PMID: 22372575 Free PMC article. - Potential application of cell reprogramming techniques for cancer research.
Saito S, Lin YC, Nakamura Y, Eckner R, Wuputra K, Kuo KK, Lin CS, Yokoyama KK. Saito S, et al. Cell Mol Life Sci. 2019 Jan;76(1):45-65. doi: 10.1007/s00018-018-2924-7. Epub 2018 Oct 3. Cell Mol Life Sci. 2019. PMID: 30283976 Free PMC article. Review. - Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos.
Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC, Meirelles FV. Sangalli JR, et al. Sci Rep. 2018 Sep 13;8(1):13766. doi: 10.1038/s41598-018-31822-7. Sci Rep. 2018. PMID: 30214009 Free PMC article. - Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term.
Maalouf WE, Liu Z, Brochard V, Renard JP, Debey P, Beaujean N, Zink D. Maalouf WE, et al. BMC Dev Biol. 2009 Feb 11;9:11. doi: 10.1186/1471-213X-9-11. BMC Dev Biol. 2009. PMID: 19210795 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials