Carbon metabolism of intracellular bacteria - PubMed (original) (raw)
Review
Carbon metabolism of intracellular bacteria
Ernesto J Muñoz-Elías et al. Cell Microbiol. 2006 Jan.
Abstract
Bacterial metabolism has been studied intensively since the first observations of these 'animalcules' by Leeuwenhoek and their isolation in pure cultures by Pasteur. Metabolic studies have traditionally focused on a small number of model organisms, primarily the Gram negative bacillus Escherichia coli, adapted to artificial culture conditions in the laboratory. Comparatively little is known about the physiology and metabolism of wild microorganisms living in their natural habitats. For approximately 500-1000 species of commensals and symbionts, and a smaller number of pathogenic bacteria, that habitat is the human body. Emerging evidence suggests that the metabolism of bacteria grown in vivo differs profoundly from their metabolism in axenic cultures.
Similar articles
- The autoinhibition activity of some microbial species.
Peschkov J. Peschkov J. Zentralbl Bakteriol Orig A. 1976 Aug;235(4):521-6. Zentralbl Bakteriol Orig A. 1976. PMID: 824897 - [Carbon isotope fractionation by aerobic heterotrophic microorganisms].
Ivlev AA, Kaloshin AG, Radiukin IuN, Sholin AF, Pozdniakova TM. Ivlev AA, et al. Mikrobiologiia. 1982 Mar-Apr;51(2):194-8. Mikrobiologiia. 1982. PMID: 6806574 Russian. - Carbon metabolism of Listeria monocytogenes growing inside macrophages.
Eylert E, Schär J, Mertins S, Stoll R, Bacher A, Goebel W, Eisenreich W. Eylert E, et al. Mol Microbiol. 2008 Aug;69(4):1008-17. doi: 10.1111/j.1365-2958.2008.06337.x. Epub 2008 Jul 9. Mol Microbiol. 2008. PMID: 18627458 - Regulation of fatty acid metabolism in bacteria.
Fujita Y, Matsuoka H, Hirooka K. Fujita Y, et al. Mol Microbiol. 2007 Nov;66(4):829-39. doi: 10.1111/j.1365-2958.2007.05947.x. Epub 2007 Oct 2. Mol Microbiol. 2007. PMID: 17919287 Review. - Carbon metabolism of intracellular bacterial pathogens and possible links to virulence.
Eisenreich W, Dandekar T, Heesemann J, Goebel W. Eisenreich W, et al. Nat Rev Microbiol. 2010 Jun;8(6):401-12. doi: 10.1038/nrmicro2351. Epub 2010 May 10. Nat Rev Microbiol. 2010. PMID: 20453875 Review.
Cited by
- Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening.
Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE 3rd, Sherman DR, Boshoff HI, Mizrahi V. Abrahams GL, et al. Chem Biol. 2012 Jul 27;19(7):844-54. doi: 10.1016/j.chembiol.2012.05.020. Chem Biol. 2012. PMID: 22840772 Free PMC article. - The FBPase Encoding Gene glpX Is Required for Gluconeogenesis, Bacterial Proliferation and Division In Vivo of Mycobacterium marinum.
Tong J, Meng L, Wang X, Liu L, Lyu L, Wang C, Li Y, Gao Q, Yang C, Niu C. Tong J, et al. PLoS One. 2016 May 27;11(5):e0156663. doi: 10.1371/journal.pone.0156663. eCollection 2016. PLoS One. 2016. PMID: 27233038 Free PMC article. - Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae.
Iyer R, Camilli A. Iyer R, et al. Mol Microbiol. 2007 Oct;66(1):1-13. doi: 10.1111/j.1365-2958.2007.05878.x. Mol Microbiol. 2007. PMID: 17880421 Free PMC article. - Glucose 6-phosphate accumulation in mycobacteria: implications for a novel F420-dependent anti-oxidant defense system.
Hasan MR, Rahman M, Jaques S, Purwantini E, Daniels L. Hasan MR, et al. J Biol Chem. 2010 Jun 18;285(25):19135-44. doi: 10.1074/jbc.M109.074310. Epub 2010 Jan 14. J Biol Chem. 2010. PMID: 20075070 Free PMC article. - Systems approach to investigating host-pathogen interactions in infections with the biothreat agent Francisella. Constraints-based model of Francisella tularensis.
Raghunathan A, Shin S, Daefler S. Raghunathan A, et al. BMC Syst Biol. 2010 Aug 23;4:118. doi: 10.1186/1752-0509-4-118. BMC Syst Biol. 2010. PMID: 20731870 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical