Coherence and timing of cell cycle start examined at single-cell resolution - PubMed (original) (raw)
Coherence and timing of cell cycle start examined at single-cell resolution
James M Bean et al. Mol Cell. 2006.
Free article
Abstract
Cell cycle "Start" in budding yeast involves induction of a large battery of G1/S-regulated genes, coordinated with bud morphogenesis. It is unknown how intra-Start coherence of these events and inter-Start timing regularity are achieved. We developed quantitative time-lapse fluorescence microscopy on a multicell-cycle timescale, for following expression of unstable GFP under control of the G1 cyclin CLN2 promoter. Swi4, a major activator of the G1/S regulon, was required for a robustly coherent Start, as swi4 cells exhibited highly variable loss of cooccurrence of regular levels of CLN2pr-GFP expression with budding. In contrast, other known Start regulators Mbp1 and Cln3 are not needed for coherence but ensure regular timing of Start onset. The interval of nuclear retention of Whi5, a Swi4 repressor, largely accounts for wild-type mother-daughter asymmetry and for variable Start timing in cln3 mbp1 cells. Thus, multiple pathways may independently suppress qualitatively different kinds of noise at Start.
Similar articles
- Daughter-specific transcription factors regulate cell size control in budding yeast.
Di Talia S, Wang H, Skotheim JM, Rosebrock AP, Futcher B, Cross FR. Di Talia S, et al. PLoS Biol. 2009 Oct;7(10):e1000221. doi: 10.1371/journal.pbio.1000221. Epub 2009 Oct 20. PLoS Biol. 2009. PMID: 19841732 Free PMC article. - Binding specificity of the G1/S transcriptional regulators in budding yeast.
Harris MR, Lee D, Farmer S, Lowndes NF, de Bruin RA. Harris MR, et al. PLoS One. 2013 Apr 4;8(4):e61059. doi: 10.1371/journal.pone.0061059. Print 2013. PLoS One. 2013. PMID: 23593391 Free PMC article. - G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast.
Dorsey S, Tollis S, Cheng J, Black L, Notley S, Tyers M, Royer CA. Dorsey S, et al. Cell Syst. 2018 May 23;6(5):539-554.e11. doi: 10.1016/j.cels.2018.04.012. Cell Syst. 2018. PMID: 29792825 - Cell cycle regulated transcription in yeast.
Koch C, Nasmyth K. Koch C, et al. Curr Opin Cell Biol. 1994 Jun;6(3):451-9. doi: 10.1016/0955-0674(94)90039-6. Curr Opin Cell Biol. 1994. PMID: 7917338 Review. - Is START a switch?
Cross F, McKinney J. Cross F, et al. Ciba Found Symp. 1992;170:20-5; discussion 25-9. doi: 10.1002/9780470514320.ch3. Ciba Found Symp. 1992. PMID: 1483346 Review.
Cited by
- Molecular mechanisms of precise timing in cell lysis.
Mondal A, Teimouri H, Kolomeisky AB. Mondal A, et al. Biophys J. 2024 Sep 17;123(18):3090-3099. doi: 10.1016/j.bpj.2024.07.008. Epub 2024 Jul 6. Biophys J. 2024. PMID: 38971973 - A stochastic vs deterministic perspective on the timing of cellular events.
Ham L, Coomer MA, Öcal K, Grima R, Stumpf MPH. Ham L, et al. Nat Commun. 2024 Jun 20;15(1):5286. doi: 10.1038/s41467-024-49624-z. Nat Commun. 2024. PMID: 38902228 Free PMC article. - Whi5 hypo- and hyper-phosphorylation dynamics control cell-cycle entry and progression.
Xiao J, Turner JJ, Kõivomägi M, Skotheim JM. Xiao J, et al. Curr Biol. 2024 Jun 3;34(11):2434-2447.e5. doi: 10.1016/j.cub.2024.04.052. Epub 2024 May 14. Curr Biol. 2024. PMID: 38749424 - Development and CT image-domain validation of a computational lung lesion model for use in virtual imaging trials.
Sauer TJ, Bejan A, Segars P, Samei E. Sauer TJ, et al. Med Phys. 2023 Jul;50(7):4366-4378. doi: 10.1002/mp.16222. Epub 2023 Jan 28. Med Phys. 2023. PMID: 36637206 Free PMC article. - Segmentation, tracking and cell cycle analysis of live-cell imaging data with Cell-ACDC.
Padovani F, Mairhörmann B, Falter-Braun P, Lengefeld J, Schmoller KM. Padovani F, et al. BMC Biol. 2022 Aug 5;20(1):174. doi: 10.1186/s12915-022-01372-6. BMC Biol. 2022. PMID: 35932043 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases