Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization - PubMed (original) (raw)
Comparative Study
. 2006 Mar;119(1-2):185-98.
doi: 10.1007/s00439-005-0130-9. Epub 2006 Jan 5.
Lluis Armengol, Werner Schempp, Jeffrey Conroy, Norma Nowak, Stefan Müller, David N Cooper, Xavier Estivill, Wolfgang Enard, Justyna M Szamalek, Horst Hameister, Hildegard Kehrer-Sawatzki
Affiliations
- PMID: 16395594
- DOI: 10.1007/s00439-005-0130-9
Comparative Study
Identification of large-scale human-specific copy number differences by inter-species array comparative genomic hybridization
Violaine Goidts et al. Hum Genet. 2006 Mar.
Abstract
Copy number differences (CNDs), and the concomitant differences in gene number, have contributed significantly to the genomic divergence between humans and other primates. To assess its relative importance, the genomes of human, common chimpanzee, bonobo, gorilla, orangutan and macaque were compared by comparative genomic hybridization using a high-resolution human BAC array (aCGH). In an attempt to avoid potential interference from frequent intra-species polymorphism, pooled DNA samples were used from each species. A total of 322 sites of large-scale inter-species CND were identified. Most CNDs were lineage-specific but frequencies differed considerably between the lineages; the highest CND frequency among hominoids was observed in gorilla. The conserved nature of the orangutan genome has already been noted by karyotypic studies and our findings suggest that this degree of conservation may extend to the sub-microscopic level. Of the 322 CND sites identified, 14 human lineage-specific gains were observed. Most of these human-specific copy number gains span regions previously identified as segmental duplications (SDs) and our study demonstrates that SDs are major sites of CND between the genomes of humans and other primates. Four of the human-specific CNDs detected by aCGH map close to the breakpoints of human-specific karyotypic changes [e.g., the human-specific inversion of chromosome 1 and the polymorphic inversion inv(2)(p11.2q13)], suggesting that human-specific duplications may have predisposed to chromosomal rearrangement. The association of human-specific copy number gains with chromosomal breakpoints emphasizes their potential importance in mediating karyotypic evolution as well as in promoting human genomic diversity.
Similar articles
- Large-scale variation among human and great ape genomes determined by array comparative genomic hybridization.
Locke DP, Segraves R, Carbone L, Archidiacono N, Albertson DG, Pinkel D, Eichler EE. Locke DP, et al. Genome Res. 2003 Mar;13(3):347-57. doi: 10.1101/gr.1003303. Genome Res. 2003. PMID: 12618365 Free PMC article. - Identification of human specific gene duplications relative to other primates by array CGH and quantitative PCR.
Armengol G, Knuutila S, Lozano JJ, Madrigal I, Caballín MR. Armengol G, et al. Genomics. 2010 Apr;95(4):203-9. doi: 10.1016/j.ygeno.2010.02.003. Epub 2010 Feb 11. Genomics. 2010. PMID: 20153417 - Independent intrachromosomal recombination events underlie the pericentric inversions of chimpanzee and gorilla chromosomes homologous to human chromosome 16.
Goidts V, Szamalek JM, de Jong PJ, Cooper DN, Chuzhanova N, Hameister H, Kehrer-Sawatzki H. Goidts V, et al. Genome Res. 2005 Sep;15(9):1232-42. doi: 10.1101/gr.3732505. Genome Res. 2005. PMID: 16140991 Free PMC article. - The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization.
Sibley CG, Ahlquist JE. Sibley CG, et al. J Mol Evol. 1984;20(1):2-15. doi: 10.1007/BF02101980. J Mol Evol. 1984. PMID: 6429338 Review. - Structural divergence between the human and chimpanzee genomes.
Kehrer-Sawatzki H, Cooper DN. Kehrer-Sawatzki H, et al. Hum Genet. 2007 Feb;120(6):759-78. doi: 10.1007/s00439-006-0270-6. Epub 2006 Oct 26. Hum Genet. 2007. PMID: 17066299 Review.
Cited by
- Segmental duplications are hot spots of copy number variants affecting barley gene content.
Bretani G, Rossini L, Ferrandi C, Russell J, Waugh R, Kilian B, Bagnaresi P, Cattivelli L, Fricano A. Bretani G, et al. Plant J. 2020 Aug;103(3):1073-1088. doi: 10.1111/tpj.14784. Epub 2020 May 17. Plant J. 2020. PMID: 32338390 Free PMC article. - The 22q11 low copy repeats are characterized by unprecedented size and structural variability.
Demaerel W, Mostovoy Y, Yilmaz F, Vervoort L, Pastor S, Hestand MS, Swillen A, Vergaelen E, Geiger EA, Coughlin CR, Chow SK, McDonald-McGinn D, Morrow B, Kwok PY, Xiao M, Emanuel BS, Shaikh TH, Vermeesch JR. Demaerel W, et al. Genome Res. 2019 Sep;29(9):1389-1401. doi: 10.1101/gr.248682.119. Genome Res. 2019. PMID: 31481461 Free PMC article. - Great ape genomics.
Wall JD. Wall JD. ILAR J. 2013;54(2):82-90. doi: 10.1093/ilar/ilt048. ILAR J. 2013. PMID: 24174434 Free PMC article. Review. - Evolution of genetic and genomic features unique to the human lineage.
O'Bleness M, Searles VB, Varki A, Gagneux P, Sikela JM. O'Bleness M, et al. Nat Rev Genet. 2012 Dec;13(12):853-66. doi: 10.1038/nrg3336. Nat Rev Genet. 2012. PMID: 23154808 Free PMC article. Review. - Molecular trajectories leading to the alternative fates of duplicate genes.
Marotta M, Piontkivska H, Tanaka H. Marotta M, et al. PLoS One. 2012;7(6):e38958. doi: 10.1371/journal.pone.0038958. Epub 2012 Jun 14. PLoS One. 2012. PMID: 22720000 Free PMC article.
References
- Mol Biol Evol. 2003 Sep;20(9):1463-79 - PubMed
- Genome Res. 2005 Feb;15(2):224-30 - PubMed
- Am J Hum Genet. 2003 Sep;73(3):489-501 - PubMed
- Genome Res. 2003 Mar;13(3):341-6 - PubMed
- Science. 2002 Aug 9;297(5583):1003-7 - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources