Model for RNA binding and the catalytic site of the RNase Kid of the bacterial parD toxin-antitoxin system - PubMed (original) (raw)
. 2006 Mar 17;357(1):115-26.
doi: 10.1016/j.jmb.2005.12.033. Epub 2005 Dec 27.
Affiliations
- PMID: 16413033
- DOI: 10.1016/j.jmb.2005.12.033
Model for RNA binding and the catalytic site of the RNase Kid of the bacterial parD toxin-antitoxin system
Monique B Kamphuis et al. J Mol Biol. 2006.
Abstract
The toxin Kid and antitoxin Kis are encoded by the parD operon of Escherichia coli plasmid R1. Kid and its chromosomal homologues MazF and ChpBK have been shown to inhibit protein synthesis in cell extracts and to act as ribosome-independent endoribonucleases in vitro. Kid cleaves RNA preferentially at the 5' side of the A residue in the nucleotide sequence 5'-UA(A/C)-3' of single-stranded regions. Here, we show that RNA cleavage by Kid yields two fragments with a 2':3'-cyclic phosphate group and a free 5'-OH group, respectively. The cleavage mechanism is similar to that of RNases A and T1, involving the uracil 2'-OH group. Via NMR titration studies with an uncleavable RNA mimic, we demonstrate that residues of both monomers of the Kid dimer together form a concatenated RNA-binding surface. Docking calculations based on the NMR chemical shifts, the cleavage mechanism and previously reported mutagenesis data provide a detailed picture of the position of the AUACA fragment within the binding pocket. We propose that residues D75, R73 and H17 form the active site of the Kid toxin, where D75 and R73 are the catalytic base and acid, respectively. The RNA sequence specificity is defined by residues T46, S47, A55, F57, T69, V71 and R73. Our data show the importance of these residues for Kid function, and the implications of our results for related toxins, such as MazF, CcdB and RelE, are discussed.
Similar articles
- Interactions between the toxin Kid of the bacterial parD system and the antitoxins Kis and MazE.
Kamphuis MB, Monti MC, van den Heuvel RH, Santos-Sierra S, Folkers GE, Lemonnier M, Díaz-Orejas R, Heck AJ, Boelens R. Kamphuis MB, et al. Proteins. 2007 Apr 1;67(1):219-31. doi: 10.1002/prot.21254. Proteins. 2007. PMID: 17206710 - A mutagenic analysis of the RNase mechanism of the bacterial Kid toxin by mass spectrometry.
Diago-Navarro E, Kamphuis MB, Boelens R, Barendregt A, Heck AJ, van den Heuvel RH, Díaz-Orejas R. Diago-Navarro E, et al. FEBS J. 2009 Sep;276(17):4973-86. doi: 10.1111/j.1742-4658.2009.07199.x. Epub 2009 Aug 4. FEBS J. 2009. PMID: 19694809 - RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system.
Muñoz-Gómez AJ, Lemonnier M, Santos-Sierra S, Berzal-Herranz A, Díaz-Orejas R. Muñoz-Gómez AJ, et al. J Bacteriol. 2005 May;187(9):3151-7. doi: 10.1128/JB.187.9.3151-3157.2005. J Bacteriol. 2005. PMID: 15838042 Free PMC article. - Structure and function of bacterial kid-kis and related toxin-antitoxin systems.
Kamphuis MB, Monti MC, van den Heuvel RH, López-Villarejo J, Díaz-Orejas R, Boelens R. Kamphuis MB, et al. Protein Pept Lett. 2007;14(2):113-24. doi: 10.2174/092986607779816096. Protein Pept Lett. 2007. PMID: 17305597 Review. - The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology.
Inouye M. Inouye M. J Cell Physiol. 2006 Dec;209(3):670-6. doi: 10.1002/jcp.20801. J Cell Physiol. 2006. PMID: 17001682 Review.
Cited by
- Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci.
Moritz EM, Hergenrother PJ. Moritz EM, et al. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):311-6. doi: 10.1073/pnas.0601168104. Epub 2006 Dec 26. Proc Natl Acad Sci U S A. 2007. PMID: 17190821 Free PMC article. - Significant bias against the ACA triplet in the tmRNA sequence of Escherichia coli K-12.
Baik S, Inoue K, Ouyang M, Inouye M. Baik S, et al. J Bacteriol. 2009 Oct;191(19):6157-66. doi: 10.1128/JB.00699-09. Epub 2009 Jul 24. J Bacteriol. 2009. PMID: 19633073 Free PMC article. - Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems.
Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF. Arbing MA, et al. Structure. 2010 Aug 11;18(8):996-1010. doi: 10.1016/j.str.2010.04.018. Structure. 2010. PMID: 20696400 Free PMC article. - The relBE2Spn toxin-antitoxin system of Streptococcus pneumoniae: role in antibiotic tolerance and functional conservation in clinical isolates.
Nieto C, Sadowy E, de la Campa AG, Hryniewicz W, Espinosa M. Nieto C, et al. PLoS One. 2010 Jun 23;5(6):e11289. doi: 10.1371/journal.pone.0011289. PLoS One. 2010. PMID: 20585658 Free PMC article. - Structural basis of mRNA recognition and cleavage by toxin MazF and its regulation by antitoxin MazE in Bacillus subtilis.
Simanshu DK, Yamaguchi Y, Park JH, Inouye M, Patel DJ. Simanshu DK, et al. Mol Cell. 2013 Nov 7;52(3):447-58. doi: 10.1016/j.molcel.2013.09.006. Epub 2013 Oct 10. Mol Cell. 2013. PMID: 24120662 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases