The telomeric PARP, tankyrases, as targets for cancer therapy - PubMed (original) (raw)
Review
The telomeric PARP, tankyrases, as targets for cancer therapy
H Seimiya. Br J Cancer. 2006.
Abstract
The requirement for the maintenance of telomeres by telomerase by most cancer cells for continued proliferation is a target in anticancer strategies. Tankyrases are poly(ADP-ribose) polymerases that enhance telomerase access to telomeres. Tankyrase 1 modulates telomerase inhibition in human cancer cells and is reviewed in this report as a potential telomere-directed anticancer target.
Figures
Figure 1
Structures of tankyrase 1 and tankyrase 2. HPS, homopolymeric runs of His, Pro, and Ser, without known functions; ANK, ankyrin domain, consisting of 24 ANK repeats; SAM, multimerization domain homologous to the sterile alpha motif; PARP, PARP catalytic domain that adds ADP-ribose chains onto acceptor proteins. The ANK domain is further divided into five well-conserved ANK repeat clusters (ARC), each of which contributes to ligand binding. Bridges above two adjacent ANK repeats indicate the presence of a conserved histidine contributing to inter-repeat stabilization.
Figure 2
Telomere elongation by tankyrase 1 and impact on telomerase inhibitors. For telomere elongation, active telomerase needs to gain access to the telomeric 3′-overhang. The TRF1-TIN2-TPP1-POT1 telomeric protein complex limits telomerase access, whereas tankyrase 1 removes the telomeric protein complex by poly(ADP-ribosyl)ating TRF1. Either telomere shortening or tankyrase 1 upregulation, each of which decreases the TRF1-TIN2-TPP1-POT1 loading on a chromosome end, attenuates the impact of telomerase inhibitors by allowing access of residual telomerase activity. Conversely, blockade of tankyrase 1 enhances the effect of telomerase inhibitors. The relative importance of tankyrase 1 vs tankyrase 2 inhibition remains unclear.
Similar articles
- Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics.
Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. Seimiya H, et al. Cancer Cell. 2005 Jan;7(1):25-37. doi: 10.1016/j.ccr.2004.11.021. Cancer Cell. 2005. PMID: 15652747 - Evaluation of tankyrase inhibition in whole cells.
Ohishi T, Tsuruo T, Seimiya H. Ohishi T, et al. Methods Mol Biol. 2007;405:133-46. doi: 10.1007/978-1-60327-070-0_11. Methods Mol Biol. 2007. PMID: 18369822 - Mechanism-based combination telomerase inhibition therapy.
Shay JW, Wright WE. Shay JW, et al. Cancer Cell. 2005 Jan;7(1):1-2. doi: 10.1016/j.ccr.2004.12.012. Cancer Cell. 2005. PMID: 15652743 - Telomerase inhibitors in cancer therapy: current status and future directions.
Incles CM, Schultes CM, Neidle S. Incles CM, et al. Curr Opin Investig Drugs. 2003 Jun;4(6):675-85. Curr Opin Investig Drugs. 2003. PMID: 12901225 Review. - Telomere maintenance mechanisms as a target for drug development.
Bearss DJ, Hurley LH, Von Hoff DD. Bearss DJ, et al. Oncogene. 2000 Dec 27;19(56):6632-41. doi: 10.1038/sj.onc.1204092. Oncogene. 2000. PMID: 11426649 Review.
Cited by
- Spontaneous Development of Dental Dysplasia in Aged Parp-1 Knockout Mice.
Fujihara H, Nozaki T, Tsutsumi M, Isumi M, Shimoda S, Hamada Y, Masutani M. Fujihara H, et al. Cells. 2019 Sep 27;8(10):1157. doi: 10.3390/cells8101157. Cells. 2019. PMID: 31569682 Free PMC article. - PARP Inhibitor PJ34 Suppresses Osteogenic Differentiation in Mouse Mesenchymal Stem Cells by Modulating BMP-2 Signaling Pathway.
Kishi Y, Fujihara H, Kawaguchi K, Yamada H, Nakayama R, Yamamoto N, Fujihara Y, Hamada Y, Satomura K, Masutani M. Kishi Y, et al. Int J Mol Sci. 2015 Oct 19;16(10):24820-38. doi: 10.3390/ijms161024820. Int J Mol Sci. 2015. PMID: 26492236 Free PMC article. - Human tankyrases are aberrantly expressed in colon tumors and contain multiple epitopes that induce humoral and cellular immune responses in cancer patients.
Shebzukhov YV, Lavrik IN, Karbach J, Khlgatian SV, Koroleva EP, Belousov PV, Kashkin KN, Knuth A, Jager E, Chi NW, Kuprash DV, Nedospasov SA. Shebzukhov YV, et al. Cancer Immunol Immunother. 2008 Jun;57(6):871-81. doi: 10.1007/s00262-007-0423-z. Epub 2007 Nov 20. Cancer Immunol Immunother. 2008. PMID: 18026951 Free PMC article. - Advances in the proteomic discovery of novel therapeutic targets in cancer.
Guo S, Zou J, Wang G. Guo S, et al. Drug Des Devel Ther. 2013 Oct 24;7:1259-71. doi: 10.2147/DDDT.S52216. eCollection 2013. Drug Des Devel Ther. 2013. PMID: 24187485 Free PMC article. Review. - Tankyrases: structure, function and therapeutic implications in cancer.
Haikarainen T, Krauss S, Lehtio L. Haikarainen T, et al. Curr Pharm Des. 2014;20(41):6472-88. doi: 10.2174/1381612820666140630101525. Curr Pharm Des. 2014. PMID: 24975604 Free PMC article. Review.
References
- Bae J, Donigian JR, Hsueh AJ (2003) Tankyrase 1 interacts with Mcl-1 proteins and inhibits their regulation of apoptosis. J Biol Chem 278: 5195–5204 - PubMed
- Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434: 913–917 - PubMed
- Chang P, Coughlin M, Mitchison TJ (2005a) Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function. Nat Cell Biol 7: 1133–1139 - PubMed
- Chang P, Jacobson MK, Mitchison TJ (2004) Poly(ADP-ribose) is required for spindle assembly and structure. Nature 432: 645–649 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources