Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1 - PubMed (original) (raw)
. 2006 May;43(12):1972-81.
doi: 10.1016/j.molimm.2005.11.014. Epub 2006 Jan 19.
Affiliations
- PMID: 16423398
- DOI: 10.1016/j.molimm.2005.11.014
Sodium butyrate up-regulates cathelicidin gene expression via activator protein-1 and histone acetylation at the promoter region in a human lung epithelial cell line, EBC-1
Yutaka Kida et al. Mol Immunol. 2006 May.
Abstract
The antimicrobial protein cathelicidin is considered to play an important role in the defense mechanisms against bacterial infection. Recent studies show that sodium butyrate induces cathelicidin gene expression in human colonic, gastric and hepatic cells. However, little is known about the precise regulatory mechanisms underlying sodium butyrate-induced cathelicidin gene expression. In this study, we examined the regulatory mechanisms involved in sodium butyrate-induced cathelicidin gene expression using a human lung epithelial cell line, EBC-1. Our results indicate that sodium butyrate induces both cathelicidin mRNA and protein expression. Moreover, deletion or mutation of a putative activator protein-1 (AP-1) binding site in the cathelicidin gene promoter abrogated the response to sodium butyrate stimulation. Three different mitogen-activated protein (MAP) kinase inhibitors suppressed sodium butyrate-induced transactivation of the cathelicidin promoter. Electrophoretic mobility shift assays (EMSA) showed that nuclear extracts prepared from sodium butyrate-stimulated EBC-1 cells generated specific binding to probe including a putative AP-1 binding site in the cathelicidin gene promoter. Furthermore, chromatin immunoprecipitation (ChIP) assays demonstrated that sodium butyrate augmented histone acetylation of the cathelicidin promoter in EBC-1 cells. Therefore, these results indicate that AP-1 and histone acetylation of the cathelicidin promoter play a critical role in the regulation of inducible cathelicidin gene expression in EBC-1 cells stimulated with sodium butyrate.
Similar articles
- The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection.
Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I, Renes IB. Burger-van Paassen N, et al. Biochem J. 2009 May 13;420(2):211-9. doi: 10.1042/BJ20082222. Biochem J. 2009. PMID: 19228118 - cAMP stringently regulates human cathelicidin antimicrobial peptide expression in the mucosal epithelial cells by activating cAMP-response element-binding protein, AP-1, and inducible cAMP early repressor.
Chakraborty K, Maity PC, Sil AK, Takeda Y, Das S. Chakraborty K, et al. J Biol Chem. 2009 Aug 14;284(33):21810-21827. doi: 10.1074/jbc.M109.001180. Epub 2009 Jun 16. J Biol Chem. 2009. PMID: 19531482 Free PMC article. - Differential regulation of human cathelicidin LL-37 by free fatty acids and their analogs.
Jiang W, Sunkara LT, Zeng X, Deng Z, Myers SM, Zhang G. Jiang W, et al. Peptides. 2013 Dec;50:129-38. doi: 10.1016/j.peptides.2013.10.008. Epub 2013 Oct 18. Peptides. 2013. PMID: 24140860 - MUC2 Mucin and Butyrate Contribute to the Synthesis of the Antimicrobial Peptide Cathelicidin in Response to Entamoeba histolytica- and Dextran Sodium Sulfate-Induced Colitis.
Cobo ER, Kissoon-Singh V, Moreau F, Holani R, Chadee K. Cobo ER, et al. Infect Immun. 2017 Feb 23;85(3):e00905-16. doi: 10.1128/IAI.00905-16. Print 2017 Mar. Infect Immun. 2017. PMID: 28069814 Free PMC article.
Cited by
- Anticancer Activity of the Goat Antimicrobial Peptide ChMAP-28.
Emelianova AA, Kuzmin DV, Panteleev PV, Sorokin M, Buzdin AA, Ovchinnikova TV. Emelianova AA, et al. Front Pharmacol. 2018 Dec 21;9:1501. doi: 10.3389/fphar.2018.01501. eCollection 2018. Front Pharmacol. 2018. PMID: 30622471 Free PMC article. - New gene markers for classification and quantification of Faecalibacterium spp. in the human gut.
Tanno H, Chatel JM, Martin R, Mariat D, Sakamoto M, Yamazaki M, Salminen S, Gueimonde M, Endo A. Tanno H, et al. FEMS Microbiol Ecol. 2023 Apr 7;99(5):fiad035. doi: 10.1093/femsec/fiad035. FEMS Microbiol Ecol. 2023. PMID: 36990641 Free PMC article. - Effect of sodium butyrate on lung vascular TNFSF15 (TL1A) expression: differential expression patterns in pulmonary artery and microvascular endothelial cells.
Safaya S, Klings ES, Odhiambo A, Li G, Farber HW, Steinberg MH. Safaya S, et al. Cytokine. 2009 Apr;46(1):72-8. doi: 10.1016/j.cyto.2008.12.013. Epub 2009 Feb 28. Cytokine. 2009. PMID: 19251437 Free PMC article. - Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.
Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Canani RB, et al. World J Gastroenterol. 2011 Mar 28;17(12):1519-28. doi: 10.3748/wjg.v17.i12.1519. World J Gastroenterol. 2011. PMID: 21472114 Free PMC article. Review. - Past, Present, and Future of Gastrointestinal Microbiota Research in Cats.
Lyu Y, Su C, Verbrugghe A, Van de Wiele T, Martos Martinez-Caja A, Hesta M. Lyu Y, et al. Front Microbiol. 2020 Jul 24;11:1661. doi: 10.3389/fmicb.2020.01661. eCollection 2020. Front Microbiol. 2020. PMID: 32793152 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials