Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C - PubMed (original) (raw)
Comparative Study
. 2006 Feb 2;49(3):409-20.
doi: 10.1016/j.neuron.2006.01.009.
Affiliations
- PMID: 16446144
- DOI: 10.1016/j.neuron.2006.01.009
Free article
Comparative Study
Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C
Yuan Chen et al. Neuron. 2006.
Free article
Abstract
Neurotransmitters modulate sodium channel availability through activation of G protein-coupled receptors, cAMP-dependent protein kinase (PKA), and protein kinase C (PKC). Voltage-dependent slow inactivation also controls sodium channel availability, synaptic integration, and neuronal firing. Here we show by analysis of sodium channel mutants that neuromodulation via PKA and PKC enhances intrinsic slow inactivation of sodium channels, making them unavailable for activation. Mutations in the S6 segment in domain III (N1466A,D) either enhance or block slow inactivation, implicating S6 segments in the molecular pathway for slow inactivation. Modulation of N1466A channels by PKC or PKA is increased, whereas modulation of N1466D is nearly completely blocked. These results demonstrate that neuromodulation by PKA and PKC is caused by their enhancement of intrinsic slow inactivation gating. Modulation of slow inactivation by neurotransmitters acting through G protein-coupled receptors, PKA, and PKC is a flexible mechanism of cellular plasticity controlling the firing behavior of central neurons.
Similar articles
- Modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by protein kinase A and protein kinase C.
Vijayaragavan K, Boutjdir M, Chahine M. Vijayaragavan K, et al. J Neurophysiol. 2004 Apr;91(4):1556-69. doi: 10.1152/jn.00676.2003. Epub 2003 Dec 3. J Neurophysiol. 2004. PMID: 14657190 - Molecular properties of brain sodium channels: an important target for anticonvulsant drugs.
Catterall WA. Catterall WA. Adv Neurol. 1999;79:441-56. Adv Neurol. 1999. PMID: 10514834 Review. - Muscarinic M(1) modulation of N and L types of calcium channels is mediated by protein kinase C in neostriatal neurons.
Perez-Burgos A, Perez-Rosello T, Salgado H, Flores-Barrera E, Prieto GA, Figueroa A, Galarraga E, Bargas J. Perez-Burgos A, et al. Neuroscience. 2008 Sep 9;155(4):1079-97. doi: 10.1016/j.neuroscience.2008.06.047. Epub 2008 Jul 1. Neuroscience. 2008. PMID: 18644425 - Dopamine D(2) receptor modulation of K(+) channel activity regulates excitability of nucleus accumbens neurons at different membrane potentials.
Perez MF, White FJ, Hu XT. Perez MF, et al. J Neurophysiol. 2006 Nov;96(5):2217-28. doi: 10.1152/jn.00254.2006. Epub 2006 Aug 2. J Neurophysiol. 2006. PMID: 16885524 - Structure, function and expression of voltage-dependent sodium channels.
Kallen RG, Cohen SA, Barchi RL. Kallen RG, et al. Mol Neurobiol. 1993 Fall-Winter;7(3-4):383-428. doi: 10.1007/BF02769184. Mol Neurobiol. 1993. PMID: 8179845 Review.
Cited by
- A Reinterpretation of the Relationship between Persistent and Resurgent Sodium Currents.
Brown SP, Lawson RJ, Moreno JD, Ransdell JL. Brown SP, et al. J Neurosci. 2024 Jul 17;44(29):e2396232024. doi: 10.1523/JNEUROSCI.2396-23.2024. J Neurosci. 2024. PMID: 38858080 - Structural mechanism of voltage-gated sodium channel slow inactivation.
Chen H, Xia Z, Dong J, Huang B, Zhang J, Zhou F, Yan R, Shi Y, Gong J, Jiang J, Huang Z, Jiang D. Chen H, et al. Nat Commun. 2024 May 1;15(1):3691. doi: 10.1038/s41467-024-48125-3. Nat Commun. 2024. PMID: 38693179 Free PMC article. - A Reinterpretation of the Relationship Between Persistent and Resurgent Sodium Currents.
Brown SP, Lawson RJ, Moreno JD, Ransdell JL. Brown SP, et al. bioRxiv [Preprint]. 2024 Jun 1:2023.10.25.564042. doi: 10.1101/2023.10.25.564042. bioRxiv. 2024. PMID: 38187680 Free PMC article. Updated. Preprint. - Role of sonic hedgehog signaling pathway in the regulation of ion channels: focus on its association with cardio-cerebrovascular diseases.
Li MR, Luo XJ, Peng J. Li MR, et al. J Physiol Biochem. 2023 Nov;79(4):719-730. doi: 10.1007/s13105-023-00982-0. Epub 2023 Sep 7. J Physiol Biochem. 2023. PMID: 37676576 Review. - The Strength of hERG Inhibition by Erythromycin at Different Temperatures Might Be Due to Its Interacting Features with the Channels.
Cheng D, Wei X, Zhang Y, Zhang Q, Xu J, Yang J, Yu J, Stalin A, Liu H, Wang J, Zhong D, Pan L, Zhao W, Chen Y. Cheng D, et al. Molecules. 2023 Jul 3;28(13):5176. doi: 10.3390/molecules28135176. Molecules. 2023. PMID: 37446837 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases