Memory efficient folding algorithms for circular RNA secondary structures - PubMed (original) (raw)
Memory efficient folding algorithms for circular RNA secondary structures
Ivo L Hofacker et al. Bioinformatics. 2006.
Abstract
Background: A small class of RNA molecules, in particular the tiny genomes of viroids, are circular. Yet most structure prediction algorithms handle only linear RNAs. The most straightforward approach is to compute circular structures from 'internal' and 'external' substructures separated by a base pair. This is incompatible, however, with the memory-saving approach of the Vienna RNA Package which builds a linear RNA structure from shorter (internal) structures only.
Result: Here we describe how circular secondary structures can be obtained without additional memory requirements as a kind of 'post-processing' of the linear structures.
Availability: The circular folding algorithm is implemented in the current version of the of RNAfold program of the Vienna RNA Package, which can be downloaded from http://www.tbi.univie.ac.at/RNA/
Similar articles
- Alignment of RNA base pairing probability matrices.
Hofacker IL, Bernhart SH, Stadler PF. Hofacker IL, et al. Bioinformatics. 2004 Sep 22;20(14):2222-7. doi: 10.1093/bioinformatics/bth229. Epub 2004 Apr 8. Bioinformatics. 2004. PMID: 15073017 - INFO-RNA--a fast approach to inverse RNA folding.
Busch A, Backofen R. Busch A, et al. Bioinformatics. 2006 Aug 1;22(15):1823-31. doi: 10.1093/bioinformatics/btl194. Epub 2006 May 18. Bioinformatics. 2006. PMID: 16709587 - RNA structure alignment by a unit-vector approach.
Capriotti E, Marti-Renom MA. Capriotti E, et al. Bioinformatics. 2008 Aug 15;24(16):i112-8. doi: 10.1093/bioinformatics/btn288. Bioinformatics. 2008. PMID: 18689811 - How do RNA folding algorithms work?
Eddy SR. Eddy SR. Nat Biotechnol. 2004 Nov;22(11):1457-8. doi: 10.1038/nbt1104-1457. Nat Biotechnol. 2004. PMID: 15529172 Review. - Mutational analysis in RNAs: comparing programs for RNA deleterious mutation prediction.
Barash D, Churkin A. Barash D, et al. Brief Bioinform. 2011 Mar;12(2):104-14. doi: 10.1093/bib/bbq059. Epub 2010 Aug 11. Brief Bioinform. 2011. PMID: 21422070 Review.
Cited by
- Differential microRNA response to a high-cholesterol, high-fat diet in livers of low and high LDL-C baboons.
Karere GM, Glenn JP, VandeBerg JL, Cox LA. Karere GM, et al. BMC Genomics. 2012 Jul 18;13:320. doi: 10.1186/1471-2164-13-320. BMC Genomics. 2012. PMID: 22809019 Free PMC article. - SparseRNAfolD: optimized sparse RNA pseudoknot-free folding with dangle consideration.
Gray M, Will S, Jabbari H. Gray M, et al. Algorithms Mol Biol. 2024 Mar 3;19(1):9. doi: 10.1186/s13015-024-00256-4. Algorithms Mol Biol. 2024. PMID: 38433200 Free PMC article. - Innovative RNAi Strategies and Tactics to Tackle Plum Pox Virus (PPV) Genome in _Prunus domestica_-Plum.
Ravelonandro M, Scorza R, Briard P. Ravelonandro M, et al. Plants (Basel). 2019 Dec 2;8(12):565. doi: 10.3390/plants8120565. Plants (Basel). 2019. PMID: 31810364 Free PMC article. - BSRD: a repository for bacterial small regulatory RNA.
Li L, Huang D, Cheung MK, Nong W, Huang Q, Kwan HS. Li L, et al. Nucleic Acids Res. 2013 Jan;41(Database issue):D233-8. doi: 10.1093/nar/gks1264. Epub 2012 Nov 29. Nucleic Acids Res. 2013. PMID: 23203879 Free PMC article. - p-cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein.
Panagiotopoulos A, Tseliou M, Karakasiliotis I, Kotzampasi DM, Daskalakis V, Kesesidis N, Notas G, Lionis C, Kampa M, Pirintsos S, Sourvinos G, Castanas E. Panagiotopoulos A, et al. Pharmacol Res Perspect. 2021 Aug;9(4):e00798. doi: 10.1002/prp2.798. Pharmacol Res Perspect. 2021. PMID: 34128351 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources