Overproduction of large VLDL particles is driven by increased liver fat content in man - PubMed (original) (raw)
Overproduction of large VLDL particles is driven by increased liver fat content in man
M Adiels et al. Diabetologia. 2006 Apr.
Abstract
Aims/hypothesis: We determined whether hepatic fat content and plasma adiponectin concentration regulate VLDL(1) production.
Methods: A multicompartment model was used to simultaneously determine the kinetic parameters of triglycerides (TGs) and apolipoprotein B (ApoB) in VLDL(1) and VLDL(2) after a bolus of [(2)H(3)]leucine and [(2)H(5)]glycerol in ten men with type 2 diabetes and in 18 non-diabetic men. Liver fat content was determined by proton spectroscopy and intra-abdominal fat content by MRI.
Results: Univariate regression analysis showed that liver fat content, intra-abdominal fat volume, plasma glucose, insulin and HOMA-IR (homeostasis model assessment of insulin resistance) correlated with VLDL(1) TG and ApoB production. However, only liver fat and plasma glucose were significant in multiple regression models, emphasising the critical role of substrate fluxes and lipid availability in the liver as the driving force for overproduction of VLDL(1) in subjects with type 2 diabetes. Despite negative correlations with fasting TG levels, liver fat content, and VLDL(1) TG and ApoB pool sizes, adiponectin was not linked to VLDL(1) TG or ApoB production and thus was not a predictor of VLDL(1) production. However, adiponectin correlated negatively with the removal rates of VLDL(1) TG and ApoB.
Conclusions/interpretation: We propose that the metabolic effect of insulin resistance, partly mediated by depressed plasma adiponectin levels, increases fatty acid flux from adipose tissue to the liver and induces the accumulation of fat in the liver. Elevated plasma glucose can further increase hepatic fat content through multiple pathways, resulting in overproduction of VLDL(1) particles and leading to the characteristic dyslipidaemia associated with type 2 diabetes.
Similar articles
- Acute suppression of VLDL1 secretion rate by insulin is associated with hepatic fat content and insulin resistance.
Adiels M, Westerbacka J, Soro-Paavonen A, Häkkinen AM, Vehkavaara S, Caslake MJ, Packard C, Olofsson SO, Yki-Järvinen H, Taskinen MR, Borén J. Adiels M, et al. Diabetologia. 2007 Nov;50(11):2356-65. doi: 10.1007/s00125-007-0790-1. Epub 2007 Sep 12. Diabetologia. 2007. PMID: 17849096 - Nonalcoholic fatty liver disease as the transducer of hepatic oversecretion of very-low-density lipoprotein-apolipoprotein B-100 in obesity.
Chan DC, Watts GF, Gan S, Wong AT, Ooi EM, Barrett PH. Chan DC, et al. Arterioscler Thromb Vasc Biol. 2010 May;30(5):1043-50. doi: 10.1161/ATVBAHA.109.202275. Epub 2010 Feb 11. Arterioscler Thromb Vasc Biol. 2010. PMID: 20150556 Clinical Trial. - Regulation of plasma triglycerides in insulin resistance and diabetes.
Ginsberg HN, Zhang YL, Hernandez-Ono A. Ginsberg HN, et al. Arch Med Res. 2005 May-Jun;36(3):232-40. doi: 10.1016/j.arcmed.2005.01.005. Arch Med Res. 2005. PMID: 15925013 Review. - Abnormal hepatic apolipoprotein B metabolism in type 2 diabetes.
Vergès B. Vergès B. Atherosclerosis. 2010 Aug;211(2):353-60. doi: 10.1016/j.atherosclerosis.2010.01.028. Epub 2010 Jan 29. Atherosclerosis. 2010. PMID: 20189175 Review.
Cited by
- Impaired fasting glucose and impaired glucose tolerance have distinct lipoprotein and apolipoprotein changes: the insulin resistance atherosclerosis study.
Lorenzo C, Hartnett S, Hanley AJ, Rewers MJ, Wagenknecht LE, Karter AJ, Haffner SM. Lorenzo C, et al. J Clin Endocrinol Metab. 2013 Apr;98(4):1622-30. doi: 10.1210/jc.2012-3185. Epub 2013 Feb 28. J Clin Endocrinol Metab. 2013. PMID: 23450048 Free PMC article. - Lipid-lowering agents in nonalcoholic fatty liver disease and steatohepatitis: human studies.
Nseir W, Mograbi J, Ghali M. Nseir W, et al. Dig Dis Sci. 2012 Jul;57(7):1773-81. doi: 10.1007/s10620-012-2118-3. Epub 2012 Mar 15. Dig Dis Sci. 2012. PMID: 22419057 Review. - The crude extract from puerariae flower exerts antiobesity and antifatty liver effects in high-fat diet-induced obese mice.
Kamiya T, Sameshima-Kamiya M, Nagamine R, Tsubata M, Ikeguchi M, Takagaki K, Shimada T, Aburada M. Kamiya T, et al. Evid Based Complement Alternat Med. 2012;2012:272710. doi: 10.1155/2012/272710. Epub 2012 May 27. Evid Based Complement Alternat Med. 2012. PMID: 22685484 Free PMC article. - Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications.
Fabbrini E, Sullivan S, Klein S. Fabbrini E, et al. Hepatology. 2010 Feb;51(2):679-89. doi: 10.1002/hep.23280. Hepatology. 2010. PMID: 20041406 Free PMC article. Review. - Arsenic and cardiovascular disease.
States JC, Srivastava S, Chen Y, Barchowsky A. States JC, et al. Toxicol Sci. 2009 Feb;107(2):312-23. doi: 10.1093/toxsci/kfn236. Epub 2008 Nov 17. Toxicol Sci. 2009. PMID: 19015167 Free PMC article. Review.
References
- Nat Med. 2002 Nov;8(11):1288-95 - PubMed
- Diabetes. 2003 May;52(5):1073-80 - PubMed
- Clin Biochem. 2003 Sep;36(6):421-9 - PubMed
- Diabetes. 1997 Jan;46(1):3-10 - PubMed
- J Clin Invest. 2005 May;115(5):1343-51 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous