Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis - PubMed (original) (raw)
Review
. 2006 Feb 6;34(3):840-52.
doi: 10.1093/nar/gkj489. Print 2006.
Affiliations
- PMID: 16464822
- PMCID: PMC1361617
- DOI: 10.1093/nar/gkj489
Review
Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis
Elizabeth C Chao et al. Nucleic Acids Res. 2006.
Abstract
A common feature of all the known cancer genetic syndromes is that they predispose only to selective types of malignancy. However, many of the genes mutated in these syndromes are ubiquitously expressed, and influence seemingly universal processes such as DNA repair or cell cycle control. The tissue specificity of cancers that arise from malfunction of these apparently universal traits remains a key puzzle in cancer genetics. Mutations in DNA mismatch repair (MMR) genes cause the most common known cancer genetic syndrome, hereditary non-polyposis colorectal cancer, and the fundamental biology of MMR is one of the most intensively studied processes in laboratories all around the world. This review uses MMR as a model system to understand mechanisms that may explain the selective development of tumors in particular cell types despite the universal nature of this process. We evaluate recent data giving insights into the specific tumor types that are attributable to defective MMR in humans and mice under different modes of inheritance, and propose models that may explain the spectrum of cancer types observed.
Figures
**Figure 1
Model of cell proliferation at constant and varying rates of cell division. The left panel shows a conceptual model of cells dividing at a constant rate. The number of cell divisions is plotted on the _y_-axis and time on the _x_-axis. The proliferation rate is constant until the tenth cell division, when proliferation stops (as denoted by a Stop sign). The right panel shows a model of cells dividing at varying rates. There are repeated episodes of sharp acceleration and deceleration (as denoted by a Stop sign) of the proliferation rate, starting at time point zero. The proliferation rate is constantly changing and is not constant. The potential selective advantages for growth and increased overall mutations in critical tumor suppressor genes for cells experiencing cycles of abrupt stop/start cell division is discussed in the section ‘ACCELERATION and deceleration of proliferation: are the rates of change of proliferation rates important?’
**Figure 2
Summary of different mechanisms contributing to the specificity of cell types that are susceptible to MMR deficiency.
Similar articles
- Deficient DNA mismatch repair: a common etiologic factor for colon cancer.
Peltomäki P. Peltomäki P. Hum Mol Genet. 2001 Apr;10(7):735-40. doi: 10.1093/hmg/10.7.735. Hum Mol Genet. 2001. PMID: 11257106 Review. - Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study.
Kloor M, Huth C, Voigt AY, Benner A, Schirmacher P, von Knebel Doeberitz M, Bläker H. Kloor M, et al. Lancet Oncol. 2012 Jun;13(6):598-606. doi: 10.1016/S1470-2045(12)70109-2. Epub 2012 May 1. Lancet Oncol. 2012. PMID: 22552011 - Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type.
Wang Q, Montmain G, Ruano E, Upadhyaya M, Dudley S, Liskay RM, Thibodeau SN, Puisieux A. Wang Q, et al. Hum Genet. 2003 Feb;112(2):117-23. doi: 10.1007/s00439-002-0858-4. Epub 2002 Nov 21. Hum Genet. 2003. PMID: 12522551 - The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas.
Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Walsh Vockley C, Kubly V, Nelson H, Michels VV, Thibodeau SN. Cunningham JM, et al. Am J Hum Genet. 2001 Oct;69(4):780-90. doi: 10.1086/323658. Epub 2001 Aug 24. Am J Hum Genet. 2001. PMID: 11524701 Free PMC article. - DNA mismatch repair and cancer.
Peltomäki P. Peltomäki P. Mutat Res. 2001 Mar;488(1):77-85. doi: 10.1016/s1383-5742(00)00058-2. Mutat Res. 2001. PMID: 11223406 Review.
Cited by
- Data sources for in vivo molecular profiling of human phenotypes.
Cardozo T, Gupta P, Ni E, Young LM, Tivon D, Felsovalyi K. Cardozo T, et al. Wiley Interdiscip Rev Syst Biol Med. 2016 Nov;8(6):472-484. doi: 10.1002/wsbm.1354. Epub 2016 Sep 7. Wiley Interdiscip Rev Syst Biol Med. 2016. PMID: 27599755 Free PMC article. Review. - Tissue-specific functional networks for prioritizing phenotype and disease genes.
Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, Bult CJ, Hibbs MA, Troyanskaya OG. Guan Y, et al. PLoS Comput Biol. 2012;8(9):e1002694. doi: 10.1371/journal.pcbi.1002694. Epub 2012 Sep 27. PLoS Comput Biol. 2012. PMID: 23028291 Free PMC article. - Association between MutL homolog 1 polymorphisms and the risk of colorectal cancer: a meta-analysis.
Chen H, Shen Z, Hu Y, Xiao Q, Bei D, Shen X, Ding K. Chen H, et al. J Cancer Res Clin Oncol. 2015 Dec;141(12):2147-58. doi: 10.1007/s00432-015-1976-4. Epub 2015 May 19. J Cancer Res Clin Oncol. 2015. PMID: 25986311 - Evaluation of Microsatellite Instability Molecular Analysis versus Immuno-Histochemical Interpretation in Malignant Neoplasms with Different Localizations.
Sfakianaki M, Tzardi M, Tsantaki K, Koutoulaki C, Messaritakis I, Datseri G, Moustou E, Mavroudis D, Souglakos J. Sfakianaki M, et al. Cancers (Basel). 2023 Jan 5;15(2):353. doi: 10.3390/cancers15020353. Cancers (Basel). 2023. PMID: 36672302 Free PMC article. - Breast-Specific Epigenetic Regulation of DeltaNp73 and Its Role in DNA-Damage-Response of _BRCA1_-Mutated Human Mammary Epithelial Cells.
Avraham A, Feldman S, Cho SS, Kol A, Heler L, Riklin-Nahmias E, Sella A, Karni T, Allweis TM, Sukumar S, Evron E. Avraham A, et al. Cancers (Basel). 2020 Aug 21;12(9):2367. doi: 10.3390/cancers12092367. Cancers (Basel). 2020. PMID: 32825620 Free PMC article.
References
- Kolodner R.D., Marsischky G.T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 1999;9:89–96. - PubMed
- Muller A., Fishel R. Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPCC) Cancer Invest. 2002;20:102–109. - PubMed
- Fishel R., Lescoe M.K., Rao M.R., Copeland N.G., Jenkins N.A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer [Erratum (1994) Cell, 77, 167.] Cell. 1993;75:1027–1038. - PubMed
- Leach F.S., Nicolaides N.C., Papadopoulos N., Liu B., Jen J., Parsons R., Peltomaki P., Sistonen P., Aaltonen L.A., Nystrom-Lahti M., et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215–1225. - PubMed