ClpS is an essential component of the N-end rule pathway in Escherichia coli - PubMed (original) (raw)
. 2006 Feb 9;439(7077):753-6.
doi: 10.1038/nature04412.
Affiliations
- PMID: 16467841
- DOI: 10.1038/nature04412
ClpS is an essential component of the N-end rule pathway in Escherichia coli
A Erbse et al. Nature. 2006.
Abstract
The N-end rule states that the half-life of a protein is determined by the nature of its amino-terminal residue. Eukaryotes and prokaryotes use N-terminal destabilizing residues as a signal to target proteins for degradation by the N-end rule pathway. In eukaryotes an E3 ligase, N-recognin, recognizes N-end rule substrates and mediates their ubiquitination and degradation by the proteasome. In Escherichia coli, N-end rule substrates are degraded by the AAA + chaperone ClpA in complex with the ClpP peptidase (ClpAP). Little is known of the molecular mechanism by which N-end rule substrates are initially selected for proteolysis. Here we report that the ClpAP-specific adaptor, ClpS, is essential for degradation of N-end rule substrates by ClpAP in bacteria. ClpS binds directly to N-terminal destabilizing residues through its substrate-binding site distal to the ClpS-ClpA interface, and targets these substrates to ClpAP for degradation. Degradation by the N-end rule pathway is more complex than anticipated and several other features are involved, including a net positive charge near the N terminus and an unstructured region between the N-terminal signal and the folded protein substrate. Through interaction with this signal, ClpS converts the ClpAP machine into a protease with exquisitely defined specificity, ideally suited to regulatory proteolysis.
Similar articles
- ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway.
Schmidt R, Zahn R, Bukau B, Mogk A. Schmidt R, et al. Mol Microbiol. 2009 Apr;72(2):506-17. doi: 10.1111/j.1365-2958.2009.06666.x. Epub 2009 Mar 17. Mol Microbiol. 2009. PMID: 19317833 - An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity.
Maglica Z, Striebel F, Weber-Ban E. Maglica Z, et al. J Mol Biol. 2008 Dec 12;384(2):503-11. doi: 10.1016/j.jmb.2008.09.046. Epub 2008 Sep 26. J Mol Biol. 2008. PMID: 18835567 - Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA.
Zeth K, Ravelli RB, Paal K, Cusack S, Bukau B, Dougan DA. Zeth K, et al. Nat Struct Biol. 2002 Dec;9(12):906-11. doi: 10.1038/nsb869. Nat Struct Biol. 2002. PMID: 12426582 - The bacterial N-end rule pathway: expect the unexpected.
Dougan DA, Truscott KN, Zeth K. Dougan DA, et al. Mol Microbiol. 2010 May;76(3):545-58. doi: 10.1111/j.1365-2958.2010.07120.x. Epub 2010 Mar 30. Mol Microbiol. 2010. PMID: 20374493 Review. - The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies.
Mogk A, Schmidt R, Bukau B. Mogk A, et al. Trends Cell Biol. 2007 Apr;17(4):165-72. doi: 10.1016/j.tcb.2007.02.001. Epub 2007 Feb 15. Trends Cell Biol. 2007. PMID: 17306546 Review.
Cited by
- Oligomerization and a distinct tRNA-binding loop are important regulators of human arginyl-transferase function.
Lan X, Huang W, Kim SB, Fu D, Abeywansha T, Lou J, Balamurugan U, Kwon YT, Ji CH, Taylor DJ, Zhang Y. Lan X, et al. Nat Commun. 2024 Jul 28;15(1):6350. doi: 10.1038/s41467-024-50719-w. Nat Commun. 2024. PMID: 39068213 Free PMC article. - Membrane Proteins as a Regulator for Antibiotic Persistence in Gram-Negative Bacteria.
Yee JX, Kim J, Yeom J. Yee JX, et al. J Microbiol. 2023 Mar;61(3):331-341. doi: 10.1007/s12275-023-00024-w. Epub 2023 Feb 17. J Microbiol. 2023. PMID: 36800168 Review. - Single-molecule fluorescence methods for protein biomarker analysis.
He H, Wu C, Saqib M, Hao R. He H, et al. Anal Bioanal Chem. 2023 Jul;415(18):3655-3669. doi: 10.1007/s00216-022-04502-9. Epub 2023 Jan 7. Anal Bioanal Chem. 2023. PMID: 36609860 Review. - AAA+ protease-adaptor structures reveal altered conformations and ring specialization.
Kim S, Fei X, Sauer RT, Baker TA. Kim S, et al. Nat Struct Mol Biol. 2022 Nov;29(11):1068-1079. doi: 10.1038/s41594-022-00850-3. Epub 2022 Nov 3. Nat Struct Mol Biol. 2022. PMID: 36329286 Free PMC article. - Bacterial degrons in synthetic circuits.
Jadhav P, Chen Y, Butzin N, Buceta J, Urchueguía A. Jadhav P, et al. Open Biol. 2022 Aug;12(8):220180. doi: 10.1098/rsob.220180. Epub 2022 Aug 17. Open Biol. 2022. PMID: 35975648 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous