K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2 alpha and PLC gamma-independent pathways - PubMed (original) (raw)
. 2006 Mar 31;357(3):783-92.
doi: 10.1016/j.jmb.2006.01.058. Epub 2006 Feb 3.
Affiliations
- PMID: 16476447
- DOI: 10.1016/j.jmb.2006.01.058
K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2 alpha and PLC gamma-independent pathways
Patricia M-J Lievens et al. J Mol Biol. 2006.
Abstract
Fibroblast growth factor receptors 3 (FGFR3) with K644M/E substitutions are associated to the severe skeletal dysplasias: severe achondroplasia with developmental delay and achanthosis nigricans(SADDAN) and thanatophoric dysplasia(TDII). The high levels of kinase activity of the FGFR3-mutants cause uncompleted biosynthesis that results in the accumulation of the immature/mannose-rich, phosphorylated receptors in the endoplasmic reticulum (ER) and STATs activation. Here we report that FGFR3 mutants activate Erk1/2 from the ER through an FRS2-independent pathway: instead, a multimeric complex by directly recruiting PLCgamma, Pyk2 and JAK1 is formed. The Erk1/2 activation from the ER however, is PLCgamma-independent, since preventing the PLCgamma/FGFR3 interaction by the Y754F substitution does not inhibit Erks. Furthermore, Erk1/2 activation is abrogated upon treatment with the Src inhibitor PP2, suggesting a role played by a Src family member in the pathway from the ER. Finally we show that the intrinsic kinase activity by mutant receptors is required to allow signaling from the ER. Overall these results highlight how activated FGFR3 exhibits signaling activity in the early phase of its biosynthesis and how segregation in a sub-cellular compartment can affect the FGFR3 multi-faceted capacity to recruit specific substrates.
Similar articles
- Sustained phosphorylation of mutated FGFR3 is a crucial feature of genetic dwarfism and induces apoptosis in the ATDC5 chondrogenic cell line via PLCgamma-activated STAT1.
Harada D, Yamanaka Y, Ueda K, Nishimura R, Morishima T, Seino Y, Tanaka H. Harada D, et al. Bone. 2007 Aug;41(2):273-81. doi: 10.1016/j.bone.2006.11.030. Epub 2007 Feb 9. Bone. 2007. PMID: 17561467 - Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation.
Montone R, Romanelli MG, Baruzzi A, Ferrarini F, Liboi E, Lievens PM. Montone R, et al. Int J Biochem Cell Biol. 2018 Feb;95:17-26. doi: 10.1016/j.biocel.2017.12.008. Epub 2017 Dec 11. Int J Biochem Cell Biol. 2018. PMID: 29242050 - Cell adaptation to activated FGFR3 includes Sprouty4 up regulation to inhibit the receptor-mediated ERKs activation from the endoplasmic reticulum.
Lievens PM, Zanolli E, Garofalo S, Liboi E. Lievens PM, et al. FEBS Lett. 2009 Oct 6;583(19):3254-8. doi: 10.1016/j.febslet.2009.09.021. Epub 2009 Sep 15. FEBS Lett. 2009. PMID: 19761767 - [Cytokines in bone diseases. FGF receptor signaling and achondroplasia/hypochondroplasia].
Tanaka H. Tanaka H. Clin Calcium. 2010 Oct;20(10):1490-6. Clin Calcium. 2010. PMID: 20890030 Review. Japanese. - [Fibroblast growth factor receptor and achondroplasia].
Tanaka H. Tanaka H. Clin Calcium. 2006 Nov;16(11):1888-93. Clin Calcium. 2006. PMID: 17079857 Review. Japanese.
Cited by
- A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges.
di Martino E, Tomlinson DC, Knowles MA. di Martino E, et al. Adv Urol. 2012;2012:429213. doi: 10.1155/2012/429213. Epub 2012 Jul 31. Adv Urol. 2012. PMID: 22899908 Free PMC article. - Fibroblast growth factor receptor 3 (FGFR3) is a strong heat shock protein 90 (Hsp90) client: implications for therapeutic manipulation.
Laederich MB, Degnin CR, Lunstrum GP, Holden P, Horton WA. Laederich MB, et al. J Biol Chem. 2011 Jun 3;286(22):19597-604. doi: 10.1074/jbc.M110.206151. Epub 2011 Apr 12. J Biol Chem. 2011. PMID: 21487019 Free PMC article. - Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner.
di Martino E, L'Hôte CG, Kennedy W, Tomlinson DC, Knowles MA. di Martino E, et al. Oncogene. 2009 Dec 3;28(48):4306-16. doi: 10.1038/onc.2009.280. Epub 2009 Sep 14. Oncogene. 2009. PMID: 19749790 Free PMC article. - Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias.
Foldynova-Trantirkova S, Wilcox WR, Krejci P. Foldynova-Trantirkova S, et al. Hum Mutat. 2012 Jan;33(1):29-41. doi: 10.1002/humu.21636. Epub 2011 Nov 16. Hum Mutat. 2012. PMID: 22045636 Free PMC article. Review. - Oncogenic driver FGFR3-TACC3 requires five coiled-coil heptads for activation and disulfide bond formation for stability.
Wang CG, Peiris MN, Meyer AN, Nelson KN, Donoghue DJ. Wang CG, et al. Oncotarget. 2023 Feb 11;14:133-145. doi: 10.18632/oncotarget.28359. Oncotarget. 2023. PMID: 36780330 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous