Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease - PubMed (original) (raw)
Comparative Study
doi: 10.1002/ana.20807.
Affiliations
- PMID: 16532490
- DOI: 10.1002/ana.20807
Comparative Study
Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease
Tokiko Fukuda et al. Ann Neurol. 2006 Apr.
Abstract
Objective: To understand the mechanisms of skeletal muscle destruction and resistance to enzyme replacement therapy in Pompe disease, a deficiency of lysosomal acid alpha-glucosidase (GAA), in which glycogen accumulates in lysosomes primarily in cardiac and skeletal muscles.
Methods: We have analyzed compartments of the lysosomal degradative pathway in GAA-deficient myoblasts and single type I and type II muscle fibers isolated from wild-type, untreated, and enzyme replacement therapy-treated GAA knock-out mice.
Results: Studies in myoblasts from GAA knock-out mice showed a dramatic expansion of vesicles of the endocytic/autophagic pathways, decreased vesicular movement in overcrowded cells, and an acidification defect in a subset of late endosomes/lysosomes. Analysis by confocal microscopy of isolated muscle fibers demonstrated that the consequences of the lysosomal glycogen accumulation are strikingly different in type I and II muscle fibers. Only type II fibers, which are the most resistant to therapy, contain large regions of autophagic buildup that span the entire length of the fibers.
Interpretation: The vastly increased autophagic buildup may be responsible for skeletal muscle damage and prevent efficient trafficking of replacement enzyme to lysosomes.
Similar articles
- Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease.
Fukuda T, Ahearn M, Roberts A, Mattaliano RJ, Zaal K, Ralston E, Plotz PH, Raben N. Fukuda T, et al. Mol Ther. 2006 Dec;14(6):831-9. doi: 10.1016/j.ymthe.2006.08.009. Epub 2006 Sep 27. Mol Ther. 2006. PMID: 17008131 Free PMC article. - Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.
Raben N, Fukuda T, Gilbert AL, de Jong D, Thurberg BL, Mattaliano RJ, Meikle P, Hopwood JJ, Nagashima K, Nagaraju K, Plotz PH. Raben N, et al. Mol Ther. 2005 Jan;11(1):48-56. doi: 10.1016/j.ymthe.2004.09.017. Mol Ther. 2005. PMID: 15585405 - Recombinant human acid alpha-glucosidase corrects acid alpha-glucosidase-deficient human fibroblasts, quail fibroblasts, and quail myoblasts.
Yang HW, Kikuchi T, Hagiwara Y, Mizutani M, Chen YT, Van Hove JL. Yang HW, et al. Pediatr Res. 1998 Mar;43(3):374-80. doi: 10.1203/00006450-199803000-00011. Pediatr Res. 1998. PMID: 9505277 - Role of autophagy in the pathogenesis of Pompe disease.
Raben N, Roberts A, Plotz PH. Raben N, et al. Acta Myol. 2007 Jul;26(1):45-8. Acta Myol. 2007. PMID: 17915569 Free PMC article. Review. - Pompe disease: current state of treatment modalities and animal models.
Geel TM, McLaughlin PM, de Leij LF, Ruiters MH, Niezen-Koning KE. Geel TM, et al. Mol Genet Metab. 2007 Dec;92(4):299-307. doi: 10.1016/j.ymgme.2007.07.009. Epub 2007 Sep 7. Mol Genet Metab. 2007. PMID: 17826266 Review.
Cited by
- Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence.
Mensch A, Zierz S. Mensch A, et al. Int J Mol Sci. 2020 Aug 13;21(16):5830. doi: 10.3390/ijms21165830. Int J Mol Sci. 2020. PMID: 32823799 Free PMC article. Review. - Metabolic adaptations to interrupted glycosaminoglycan recycling.
Woloszynek JC, Kovacs A, Ohlemiller KK, Roberts M, Sands MS. Woloszynek JC, et al. J Biol Chem. 2009 Oct 23;284(43):29684-91. doi: 10.1074/jbc.M109.020818. Epub 2009 Aug 21. J Biol Chem. 2009. PMID: 19700765 Free PMC article. - Acid alpha-glucosidase deficiency (Pompe disease).
Fukuda T, Roberts A, Plotz PH, Raben N. Fukuda T, et al. Curr Neurol Neurosci Rep. 2007 Jan;7(1):71-7. doi: 10.1007/s11910-007-0024-4. Curr Neurol Neurosci Rep. 2007. PMID: 17217857 Review. - Improved efficacy of a next-generation ERT in murine Pompe disease.
Xu S, Lun Y, Frascella M, Garcia A, Soska R, Nair A, Ponery AS, Schilling A, Feng J, Tuske S, Valle MCD, Martina JA, Ralston E, Gotschall R, Valenzano KJ, Puertollano R, Do HV, Raben N, Khanna R. Xu S, et al. JCI Insight. 2019 Mar 7;4(5):e125358. doi: 10.1172/jci.insight.125358. eCollection 2019 Mar 7. JCI Insight. 2019. PMID: 30843882 Free PMC article. - A non-BRICHOS SFTPC mutant (SP-CI73T) linked to interstitial lung disease promotes a late block in macroautophagy disrupting cellular proteostasis and mitophagy.
Hawkins A, Guttentag SH, Deterding R, Funkhouser WK, Goralski JL, Chatterjee S, Mulugeta S, Beers MF. Hawkins A, et al. Am J Physiol Lung Cell Mol Physiol. 2015 Jan 1;308(1):L33-47. doi: 10.1152/ajplung.00217.2014. Epub 2014 Oct 24. Am J Physiol Lung Cell Mol Physiol. 2015. PMID: 25344067 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous