The Seattle Heart Failure Model: prediction of survival in heart failure - PubMed (original) (raw)
. 2006 Mar 21;113(11):1424-33.
doi: 10.1161/CIRCULATIONAHA.105.584102. Epub 2006 Mar 13.
Dariush Mozaffarian, David T Linker, Santosh C Sutradhar, Stefan D Anker, Anne B Cropp, Inder Anand, Aldo Maggioni, Paul Burton, Mark D Sullivan, Bertram Pitt, Philip A Poole-Wilson, Douglas L Mann, Milton Packer
Affiliations
- PMID: 16534009
- DOI: 10.1161/CIRCULATIONAHA.105.584102
The Seattle Heart Failure Model: prediction of survival in heart failure
Wayne C Levy et al. Circulation. 2006.
Abstract
Background: Heart failure has an annual mortality rate ranging from 5% to 75%. The purpose of the study was to develop and validate a multivariate risk model to predict 1-, 2-, and 3-year survival in heart failure patients with the use of easily obtainable characteristics relating to clinical status, therapy (pharmacological as well as devices), and laboratory parameters.
Methods and results: The Seattle Heart Failure Model was derived in a cohort of 1125 heart failure patients with the use of a multivariate Cox model. For medications and devices not available in the derivation database, hazard ratios were estimated from published literature. The model was prospectively validated in 5 additional cohorts totaling 9942 heart failure patients and 17,307 person-years of follow-up. The accuracy of the model was excellent, with predicted versus actual 1-year survival rates of 73.4% versus 74.3% in the derivation cohort and 90.5% versus 88.5%, 86.5% versus 86.5%, 83.8% versus 83.3%, 90.9% versus 91.0%, and 89.6% versus 86.7% in the 5 validation cohorts. For the lowest score, the 2-year survival was 92.8% compared with 88.7%, 77.8%, 58.1%, 29.5%, and 10.8% for scores of 0, 1, 2, 3, and 4, respectively. The overall receiver operating characteristic area under the curve was 0.729 (95% CI, 0.714 to 0.744). The model also allowed estimation of the benefit of adding medications or devices to an individual patient's therapeutic regimen.
Conclusions: The Seattle Heart Failure Model provides an accurate estimate of 1-, 2-, and 3-year survival with the use of easily obtained clinical, pharmacological, device, and laboratory characteristics.
Similar articles
- Improving outcomes with long-term "destination" therapy using left ventricular assist devices.
Long JW, Healy AH, Rasmusson BY, Cowley CG, Nelson KE, Kfoury AG, Clayson SE, Reid BB, Moore SA, Blank DU, Renlund DG. Long JW, et al. J Thorac Cardiovasc Surg. 2008 Jun;135(6):1353-60; discussion 1360-1. doi: 10.1016/j.jtcvs.2006.09.124. J Thorac Cardiovasc Surg. 2008. PMID: 18544385 - Prediction of mode of death in heart failure: the Seattle Heart Failure Model.
Mozaffarian D, Anker SD, Anand I, Linker DT, Sullivan MD, Cleland JG, Carson PE, Maggioni AP, Mann DL, Pitt B, Poole-Wilson PA, Levy WC. Mozaffarian D, et al. Circulation. 2007 Jul 24;116(4):392-8. doi: 10.1161/CIRCULATIONAHA.106.687103. Epub 2007 Jul 9. Circulation. 2007. PMID: 17620506 - Validation of the Seattle Heart Failure Model in a community-based heart failure population and enhancement by adding B-type natriuretic peptide.
May HT, Horne BD, Levy WC, Kfoury AG, Rasmusson KD, Linker DT, Mozaffarian D, Anderson JL, Renlund DG. May HT, et al. Am J Cardiol. 2007 Aug 15;100(4):697-700. doi: 10.1016/j.amjcard.2007.03.083. Epub 2007 Jun 26. Am J Cardiol. 2007. PMID: 17697831 - Symptomatic relief: left ventricular assist devices versus resynchronization therapy.
Delgado RM 3rd, Radovancevic B. Delgado RM 3rd, et al. Heart Fail Clin. 2007 Jul;3(3):259-65. doi: 10.1016/j.hfc.2007.05.004. Heart Fail Clin. 2007. PMID: 17723934 Review. - Interventional electrophysiology and cardiac resynchronization therapy: delivering electrical therapies for heart failure.
Burkhardt JD, Wilkoff BL. Burkhardt JD, et al. Circulation. 2007 Apr 24;115(16):2208-20. doi: 10.1161/CIRCULATIONAHA.106.655712. Circulation. 2007. PMID: 17452619 Review.
Cited by
- Development and validation of an integrated diagnostic algorithm derived from parameters monitored in implantable devices for identifying patients at risk for heart failure hospitalization in an ambulatory setting.
Cowie MR, Sarkar S, Koehler J, Whellan DJ, Crossley GH, Tang WH, Abraham WT, Sharma V, Santini M. Cowie MR, et al. Eur Heart J. 2013 Aug;34(31):2472-80. doi: 10.1093/eurheartj/eht083. Epub 2013 Mar 19. Eur Heart J. 2013. PMID: 23513212 Free PMC article. - Usefulness of cognitive dysfunction in heart failure to predict cardiovascular risk at 180 days.
Gelow JM, Mudd JO, Chien CV, Lee CS. Gelow JM, et al. Am J Cardiol. 2015 Mar 15;115(6):778-82. doi: 10.1016/j.amjcard.2014.12.040. Epub 2015 Jan 7. Am J Cardiol. 2015. PMID: 25644853 Free PMC article. - A novel cardiac magnetic resonance-based personalized risk stratification model in dilated cardiomyopathy: a prospective study.
Zhou D, Zhu L, Wu W, Zhuang B, He J, Xu J, Yang W, Wang Y, Li S, Sun X, Sharma P, Liu G, Sirajuddin A, Arai A, Zhao S, Lu M. Zhou D, et al. Eur Radiol. 2024 Jun;34(6):4053-4064. doi: 10.1007/s00330-023-10415-7. Epub 2023 Nov 11. Eur Radiol. 2024. PMID: 37950081 - Updates on Laboratory Evaluation of Feline Cardiac Diseases.
Gavazza A, Marchegiani A, Guerriero L, Turinelli V, Spaterna A, Mangiaterra S, Galosi L, Rossi G, Cerquetella M. Gavazza A, et al. Vet Sci. 2021 Mar 3;8(3):41. doi: 10.3390/vetsci8030041. Vet Sci. 2021. PMID: 33802401 Free PMC article. Review. - Mortality risk in dilated cardiomyopathy: the accuracy of heart failure prognostic models and dilated cardiomyopathy-tailored prognostic model.
Dziewięcka E, Gliniak M, Winiarczyk M, Karapetyan A, Wiśniowska-Śmiałek S, Karabinowska A, Dziewięcki M, Podolec P, Rubiś P. Dziewięcka E, et al. ESC Heart Fail. 2020 Oct;7(5):2455-2467. doi: 10.1002/ehf2.12809. Epub 2020 Aug 27. ESC Heart Fail. 2020. PMID: 32853471 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical