Bayesian robust inference for differential gene expression in microarrays with multiple samples - PubMed (original) (raw)
Bayesian robust inference for differential gene expression in microarrays with multiple samples
Raphael Gottardo et al. Biometrics. 2006 Mar.
Abstract
We consider the problem of identifying differentially expressed genes under different conditions using gene expression microarrays. Because of the many steps involved in the experimental process, from hybridization to image analysis, cDNA microarray data often contain outliers. For example, an outlying data value could occur because of scratches or dust on the surface, imperfections in the glass, or imperfections in the array production. We develop a robust Bayesian hierarchical model for testing for differential expression. Errors are modeled explicitly using a t-distribution, which accounts for outliers. The model includes an exchangeable prior for the variances, which allows different variances for the genes but still shrinks extreme empirical variances. Our model can be used for testing for differentially expressed genes among multiple samples, and it can distinguish between the different possible patterns of differential expression when there are three or more samples. Parameter estimation is carried out using a novel version of Markov chain Monte Carlo that is appropriate when the model puts mass on subspaces of the full parameter space. The method is illustrated using two publicly available gene expression data sets. We compare our method to six other baseline and commonly used techniques, namely the t-test, the Bonferroni-adjusted t-test, significance analysis of microarrays (SAM), Efron's empirical Bayes, and EBarrays in both its lognormal-normal and gamma-gamma forms. In an experiment with HIV data, our method performed better than these alternatives, on the basis of between-replicate agreement and disagreement.
Similar articles
- Statistical analysis of microarray data: a Bayesian approach.
Gottardo R, Pannucci JA, Kuske CR, Brettin T. Gottardo R, et al. Biostatistics. 2003 Oct;4(4):597-620. doi: 10.1093/biostatistics/4.4.597. Biostatistics. 2003. PMID: 14557114 - Normal uniform mixture differential gene expression detection for cDNA microarrays.
Dean N, Raftery AE. Dean N, et al. BMC Bioinformatics. 2005 Jul 12;6:173. doi: 10.1186/1471-2105-6-173. BMC Bioinformatics. 2005. PMID: 16011807 Free PMC article. - A Bayesian mixture model for partitioning gene expression data.
Zhou C, Wakefield J. Zhou C, et al. Biometrics. 2006 Jun;62(2):515-25. doi: 10.1111/j.1541-0420.2005.00492.x. Biometrics. 2006. PMID: 16918916 - Differential analysis of DNA microarray gene expression data.
Hatfield GW, Hung SP, Baldi P. Hatfield GW, et al. Mol Microbiol. 2003 Feb;47(4):871-7. doi: 10.1046/j.1365-2958.2003.03298.x. Mol Microbiol. 2003. PMID: 12581345 Review. - Bayesian normalization and identification for differential gene expression data.
Zhang D, Wells MT, Smart CD, Fry WE. Zhang D, et al. J Comput Biol. 2005 May;12(4):391-406. doi: 10.1089/cmb.2005.12.391. J Comput Biol. 2005. PMID: 15882138 Review.
Cited by
- Robust modeling of differential gene expression data using normal/independent distributions: a Bayesian approach.
Ganjali M, Baghfalaki T, Berridge D. Ganjali M, et al. PLoS One. 2015 Apr 24;10(4):e0123791. doi: 10.1371/journal.pone.0123791. eCollection 2015. PLoS One. 2015. PMID: 25910040 Free PMC article. - Mixture models for single-cell assays with applications to vaccine studies.
Finak G, McDavid A, Chattopadhyay P, Dominguez M, De Rosa S, Roederer M, Gottardo R. Finak G, et al. Biostatistics. 2014 Jan;15(1):87-101. doi: 10.1093/biostatistics/kxt024. Epub 2013 Jul 24. Biostatistics. 2014. PMID: 23887981 Free PMC article. - Identification of pharmacogenetic markers in smoking cessation therapy.
Heitjan DF, Guo M, Ray R, Wileyto EP, Epstein LH, Lerman C. Heitjan DF, et al. Am J Med Genet B Neuropsychiatr Genet. 2008 Sep 5;147B(6):712-9. doi: 10.1002/ajmg.b.30669. Am J Med Genet B Neuropsychiatr Genet. 2008. PMID: 18165968 Free PMC article. Clinical Trial. - Multivariate Time Series Change-Point Detection with a Novel Pearson-like Scaled Bregman Divergence.
Si T, Wang Y, Zhang L, Richmond E, Ahn TH, Gong H. Si T, et al. Stats (Basel). 2024 Jun;7(2):462-480. doi: 10.3390/stats7020028. Epub 2024 May 13. Stats (Basel). 2024. PMID: 38827579 Free PMC article. - Bayesian Modeling of MPSS Data: Gene Expression Analysis of Bovine Salmonella Infection.
Dhavala SS, Datta S, Mallick BK, Carroll RJ, Khare S, Lawhon SD, Adams LG. Dhavala SS, et al. J Am Stat Assoc. 2010 Sep 1;105(491):956-967. doi: 10.1198/jasa.2010.ap08327. J Am Stat Assoc. 2010. PMID: 21165171 Free PMC article.
Publication types
MeSH terms
Grants and funding
- 1K25CA106988-01/CA/NCI NIH HHS/United States
- 1U19ES011387-02/ES/NIEHS NIH HHS/United States
- 5R01HL072370-02/HL/NHLBI NIH HHS/United States
- K25 CA106988-02/CA/NCI NIH HHS/United States
- 5P01AI052106-02/AI/NIAID NIH HHS/United States
- 1S10RR019423-01/RR/NCRR NIH HHS/United States
- K25 CA106988-03/CA/NCI NIH HHS/United States
- 8R01EB002137-02/EB/NIBIB NIH HHS/United States
- 1U54AI057141-01/AI/NIAID NIH HHS/United States
- K25 CA106988/CA/NCI NIH HHS/United States
- 1P50HL073996-01/HL/NHLBI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Molecular Biology Databases