Molecular mechanism of antimicrobial peptides: the origin of cooperativity - PubMed (original) (raw)
Review
. 2006 Sep;1758(9):1292-302.
doi: 10.1016/j.bbamem.2006.02.001. Epub 2006 Feb 28.
Affiliations
- PMID: 16542637
- DOI: 10.1016/j.bbamem.2006.02.001
Free article
Review
Molecular mechanism of antimicrobial peptides: the origin of cooperativity
Huey W Huang. Biochim Biophys Acta. 2006 Sep.
Free article
Abstract
Based on very extensive studies on four peptides (alamethicin, melittin, magainin and protegrin), we propose a mechanism to explain the cooperativity exhibited by the activities of antimicrobial peptides, namely, a non-linear concentration dependence characterized by a threshold and a rapid rise to saturation as the concentration exceeds the threshold. We first review the structural basis of the mechanism. Experiments showed that peptide binding to lipid bilayers creates two distinct states depending on the bound-peptide to lipid ratio P/L. For P/L below a threshold P/L*, all of the peptide molecules are in the S state that has the following characteristics: (1) there are no pores in the membrane, (2) the axes of helical peptides are oriented parallel to the plane of membrane, and (3) the peptide causes membrane thinning in proportion to P/L. As P/L increases above P/L*, essentially all of the excessive peptide molecules occupy the I state that has the following characteristics: (1) transmembrane pores are detected in the membrane, (2) the axes of helical peptides are perpendicular to the plane of membrane, (3) the membrane thickness remains constant for P/L> or =P/L*. The free energy based on these two states agrees with the data quantitatively. The free energy also explains why lipids of positive curvature (lysoPC) facilitate and lipids of negative curvature (PE) inhibit pore formation.
Similar articles
- Energetics of pore formation induced by membrane active peptides.
Lee MT, Chen FY, Huang HW. Lee MT, et al. Biochemistry. 2004 Mar 30;43(12):3590-9. doi: 10.1021/bi036153r. Biochemistry. 2004. PMID: 15035629 - Membrane thinning effect of the beta-sheet antimicrobial protegrin.
Heller WT, Waring AJ, Lehrer RI, Harroun TA, Weiss TM, Yang L, Huang HW. Heller WT, et al. Biochemistry. 2000 Jan 11;39(1):139-45. doi: 10.1021/bi991892m. Biochemistry. 2000. PMID: 10625488 - Multiple states of beta-sheet peptide protegrin in lipid bilayers.
Heller WT, Waring AJ, Lehrer RI, Huang HW. Heller WT, et al. Biochemistry. 1998 Dec 8;37(49):17331-8. doi: 10.1021/bi981314q. Biochemistry. 1998. PMID: 9860847 - Biological activity and structural aspects of PGLa interaction with membrane mimetic systems.
Lohner K, Prossnigg F. Lohner K, et al. Biochim Biophys Acta. 2009 Aug;1788(8):1656-66. doi: 10.1016/j.bbamem.2009.05.012. Epub 2009 May 29. Biochim Biophys Acta. 2009. PMID: 19481533 Review. - AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides?
Strandberg E, Ulrich AS. Strandberg E, et al. Biochim Biophys Acta. 2015 Sep;1848(9):1944-54. doi: 10.1016/j.bbamem.2015.02.019. Epub 2015 Feb 27. Biochim Biophys Acta. 2015. PMID: 25726906 Review.
Cited by
- Designing antimicrobial peptides: form follows function.
Fjell CD, Hiss JA, Hancock RE, Schneider G. Fjell CD, et al. Nat Rev Drug Discov. 2011 Dec 16;11(1):37-51. doi: 10.1038/nrd3591. Nat Rev Drug Discov. 2011. PMID: 22173434 Review. - Disparate Regions of the Human Chemokine CXCL10 Exhibit Broad-Spectrum Antimicrobial Activity against Biodefense and Antibiotic-Resistant Bacterial Pathogens.
Crawford MA, Ward AE, Gray V, Bailer P, Fisher DJ, Kubicka E, Cui Z, Luo Q, Gray MC, Criss AK, Lum LG, Tamm LK, Letteri RA, Hughes MA. Crawford MA, et al. ACS Infect Dis. 2023 Jan 13;9(1):122-139. doi: 10.1021/acsinfecdis.2c00456. Epub 2022 Dec 7. ACS Infect Dis. 2023. PMID: 36475632 Free PMC article. - Self-Association of Antimicrobial Peptides: A Molecular Dynamics Simulation Study on Bombinin.
Petkov P, Lilkova E, Ilieva N, Litov L. Petkov P, et al. Int J Mol Sci. 2019 Nov 1;20(21):5450. doi: 10.3390/ijms20215450. Int J Mol Sci. 2019. PMID: 31683755 Free PMC article. - Influence of lipid composition on membrane activity of antimicrobial phenylene ethynylene oligomers.
Som A, Tew GN. Som A, et al. J Phys Chem B. 2008 Mar 20;112(11):3495-502. doi: 10.1021/jp077487j. Epub 2008 Feb 23. J Phys Chem B. 2008. PMID: 18293958 Free PMC article. - An active machine learning discovery platform for membrane-disrupting and pore-forming peptides.
van Teijlingen A, Edwards DC, Hu L, Lilienkampf A, Cockroft SL, Tuttle T. van Teijlingen A, et al. Phys Chem Chem Phys. 2024 Jun 26;26(25):17745-17752. doi: 10.1039/d4cp01404a. Phys Chem Chem Phys. 2024. PMID: 38873737 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials